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Abstract—Deep learning (DL) systems are widely used in do-
mains including aircraft collision avoidance systems, Alzheimer’s
disease diagnosis, and autonomous driving cars. Despite the
requirement for high reliability, DL systems are difficult to test.

Existing DL testing work focuses on testing the DL models, not
the implementations (e.g., DL software libraries) of the models.
One key challenge of testing DL libraries is the difficulty of
knowing the expected output of DL libraries given an input
instance. Fortunately, there are multiple implementations of the
same DL algorithms in different DL libraries.

Thus, we propose CRADLE, a new approach that focuses on
finding and localizing bugs in DL software libraries. CRADLE (1)
performs cross-implementation inconsistency checking to detect
bugs in DL libraries, and (2) leverages anomaly propagation
tracking and analysis to localize faulty functions in DL libraries
that cause the bugs. We evaluate CRADLE on three libraries
(TensorFlow, CNTK, and Theano), 11 datasets (including Ima-
geNet, MNIST, and KGS Go game), and 30 pre-trained models.
CRADLE detects 12 bugs and 104 unique inconsistencies, and
highlights functions relevant to the causes of inconsistencies for
all 104 unique inconsistencies.

Index Terms—deep learning software testing; cross-
implementation testing; bugs detection; software testing;

I. INTRODUCTION

Deep learning (DL) is widely used in many domains, includ-

ing aircraft collision avoidance systems [1], Alzheimer’s dis-

ease diagnosis [2], autonomous driving cars [3], and romance

storytelling [4], [5]. Bugs in such systems can cause disastrous

consequences, e.g., a software bug in Uber’s self-driving car

DL system has resulted in the death of a pedestrian [6].

Users of DL systems have a diverse range of background,

including people with little technical backgrounds, e.g., singer-

s/songwriters have used DL to compose music [7]. The per-

vasive use of DL systems requires them to be highly reliable.

Unfortunately, DL algorithms are complex to understand

and use. Average users do not know all the details of DL

algorithms. High-level DL Application Programming Inter-

faces (APIs) have been developed to enable users to build DL

systems without knowledge of the inner working of neural

networks. These high-level APIs rely on lower-level libraries

that implement DL algorithms.

Figure 1 presents the structure of typical DL libraries.

Developers write code using high-level library APIs (e.g.,

Keras [8] API). These APIs invoke low-level libraries that

implement specific DL algorithms. Low-level libraries such

Fig. 1: Overview of DL libraries.

as TensorFlow (Google) [9], Theano [10], and CNTK (Mi-

crosoft) [11], implement the same algorithms, e.g., convolu-

tional neural network (CNN) and recurrent neural network

(RNN). Low-level libraries use different input formats and

provide different APIs, while a high-level library allows users

to seamlessly switch among different low-level libraries. The

components that invoke low-level libraries are referred to as

the interfaces between the high-level libraries and the low-

level libraries. Each interface and low-level library, referred to

as a backend, provides an implementation of DL algorithms.

The backend trains and tests DL models. A DL model contains

a DL network and parameters (also known as weights).

Keras [8] is the most popular high-level library for deep

learning [12]. Keras has been used to implement neural

networks in critical domains, including aircraft collision avoid-

ance systems [1], inflammatory bowel disease diagnosis [13],

chemical reaction predictions [14], medical imaging [15], [16],

air quality control [17] and computer network security [18].

The backends and the high-level libraries contain bugs,

which are particularly challenging to find and fix [19], [20].

One key challenge is that it is difficult for developers to

know the expected output given an input instance. DL back-

ends implement DL models that use complex networks and

mathematical formula. Thus, it is hard for humans to produce

the expected output of a DL backend given an arbitrary

input instance, if possible at all. For example, given an input

image of digit ‘1’ (ground truth ‘1’), and a digit classification

model, the expected output of that model on that image is not

necessarily ‘1’, as it is common for a model to misclassify

due to its limitations (100% classification accuracy is rarely

achieved). Existing DL testing work [19], [21]–[25] focuses

on generating input instances that make the ground truth and

the model output disagree so that DL users and builders can

improve the model.
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(a) Input image “Petri dish” (b) Top-5 InceptionResNetV2

- return (x-mean)/(C.sqrt(var)+epsilon)*gamma+beta
+ return (x-mean)/ C.sqrt(var +epsilon)*gamma+beta

(c) Bug fix in batch_normalization in the CNTK backend.

Fig. 2: A bug found by CRADLE in the CNTK backend, which

has been fixed after we reported it.

Models must be implemented by backend libraries. If the

backend libraries fail to faithfully implement a model (e.g.,

due to a bug in the backend), the output from the backend

can be wrong even if the model is correct, and vice versa.

An incorrectly-implemented DL backend may cause the afore-

mentioned digit classification model to output ‘9’ for the same

image of ’1’, even if the expected output of the DL model is

‘7’. Alternatively, the DL backend may output ‘1’ accidentally

matching the ground truth. The wrong outputs could mislead

DL users and builders in their debugging and fixing process.

The output masks the implementation bug, which makes it

challenging to be detected.

There has been little attention to testing the correctness of

the models’ implementation. Instead many techniques [19],

[21]–[25] test the correctness of the models, which assume that

the backend implementation is correct. Both the model and the

backend implementation need to be correct for DL algorithms

to produce a correct output. The critically important task of

testing DL backend implementation is challenging since the

expected output of the backend is hard to obtain as explained.

The multiple implementations (i.e., the DL backends) of

the same functionality (i.e., the same DL algorithm) provide

us a unique opportunity to detect inconsistencies among these

implementations to find bugs in DL backend libraries. For

example, if the same CNN model—which is the same CNN

network with identical weights—behaves differently when

running on the two CNN implementations (e.g., TensorFlow

and CNTK), one of the CNN implementations is likely to be

incorrect, without knowing the expected output.

Figure 2 shows a bug that causes two backends to be

inconsistent. The input image (Figure 2a) is manually labeled

as a petri dish (the ground truth) in ImageNet (a popular

dataset of manually labeled images) [26]. Figure 2b shows the

classification results of this image by the pre-trained model,

InceptionResNetV2 [27], on Keras 2.2.0 with TensorFlow and

CNTK backends respectively. While the model with Tensor-

Flow backend classifies the image as a petri dish correctly

as its first choice, the same model with CNTK classifies the

image as an analog clock, with petri dish not in the top-5.

Once an inconsistency is detected, a big challenge is to

identify the faulty functions among many functions in the

DL backend libraries. For example, one run that exposes the

inconsistency bug in Figure 2 contains 781 invocations of

backend functions. Following the complex invocation path of

the InceptionResNetV2 model, it is difficult for developers to

tease out that the batch_normalization function is faulty.

To automatically detect and localize such inconsistencies

across DL backends, we propose and implement a novel

approach—CRADLE. Given a DL model and its input data,

CRADLE (1) uses two distance metrics to compare the out-

put of a model on different backends to detect inconsistent

output, and (2) identifies the location of the inconsistency by

tracking the anomaly propagation through the execution graph.

By identifying the spike in the magnitude of the difference

between two backends, CRADLE points out the inconsistent

functions in the backend that introduces the inconsistency,

which should be very useful for developers to debug and

understand the bug.

Including the example in Figure 2, CRADLE identifies

580 images (out of a 5,000 random sample from ImageNet)

that trigger inconsistent classifications for InceptionResNetV2

model. CRADLE then successfully localizes the faulty func-

tion (bath_normalization). After we reported this bug in

the interface, developers have fixed the bug since Keras 2.2.1.

Figure 2c shows the fix. The batch normalization formula

was implemented incorrectly in CNTK backend’s function

batch_normalization: it should take the square root of

(var + epsilon) instead of the square root of var.

To evaluate the effectiveness of CRADLE, we answer the

following research questions:

RQ1: Can CRADLE detect bugs and inconsistencies in deep

learning backends?

RQ2: Can CRADLE localize the source of inconsistencies?

RQ3: What is CRADLE’s detection and localization time?

In this paper, we make the following contributions:

• A new approach to testing DL software by cross-checking

multiple implementations of the same model to detect in-

consistencies and bugs;

• The first approach to localizing the faulty function of

a cross-model inconsistency, using anomaly propagation

tracking and analysis; and

• An evaluation of the testing and localization technique on

30 DL models, 11 datasets (including ImageNet, MNIST,

Udacity challenge 2, and KGS Go game), and 15 Keras

versions (including the latest version).

Our results show that CRADLE detects 12 bugs (9 have

been fixed by developers) in DL software that cause incon-

sistencies for 28 out of 30 models, 3 of which are previously

unknown bugs, 2 of which have already been confirmed by

developers (RQ1). CRADLE highlights functions relevant to

the causes of inconsistencies for all 104 unique inconsistencies

(RQ2). CRADLE’s median end-to-end running time is less

than 5 minutes, suggesting that CRADLE is practical (RQ3).
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Fig. 3: Overview of CRADLE. Red boxes indicate CRADLE outputs.

II. BACKGROUND

A DL network is a structure (i.e., a graph) that contains

nodes or layers that are stacked to perform a specific task (e.g.,

regression or classification). Each layer represents a specific

low-level transformation (e.g., convolution, pooling, etc.) of

the input data with specific parameters (e.g., weights).

Each layer maps to a function invocation that converts

weight and the input data to output. While multiple layers

in a network can have the same type, the operation performed

is generally different because the parameters of these layers

are different. This is analogous to, in a traditional program,

the same methods/functions, defined in one specific place in

the source code, are called many times with different input

parameters. Similarly, in a DL network, the same layer type
can be called several times (i.e., in multiple layers) with

different input parameters (i.e., weights). Fed with one input

instance, a model maps to an execution graph of those low-

level functions (i.e., layers).

As a DL network generally consists of more than two layers,

there are many intermediate layers. Each intermediate layer

produces an internal state that is fed to the next layers. We call

such states hidden states because they are internal, to which

normal users have no access.

To obtain the correct weights for each layer, the network

needs to be trained on a training set. We call this phase the

training phase. Once the training phase is over, the weights

(or parameters) of each layer are fixed and do not change, and

the model can be used in the inference phase. A validation set
is a set of input, different from the training set, that is used to

tune a model. In this work, we use it as input to the models

because we know the ground-truth labels of such input.

A pre-trained model is a network that had been trained

(and saved) in prior work. Its network structure and weights

are fixed and do not change. In the context of this paper, a

trained model also refers to a pre-trained model. While the

training phase is often non-deterministic (e.g., the weights of

the network can be initialized randomly), a pre-trained model

is expected to behave deterministically in the inference phase

because the weights of each layer do not change.

III. APPROACH

In this section, we describe how CRADLE detects and

localizes inconsistencies among multiple backends. Recall that

a backend consists of low-level libraries and the interface to

high-level libraries (e.g., Keras). For example, the TensorFlow

backend contains the TensorFlow library, the interface between

Keras and TensorFlow, and the GPU computation library

Nvidia CUDA invoked by TensorFlow.

A. Overview and Challenges

Figure 3 shows the two phases of CRADLE: the detection

phase and the localization phase. The detection phase takes

pre-trained DL models and their corresponding validation data

as input. We focus only on the inference stage because of the

non-deterministic nature of DL training.

CRADLE runs a pre-trained model using multiple DL back-

ends. Specifically, the Output extractor feeds the validation

set to the trained model as input and extracts the sets of

output from the model on multiple backends. In general, we

represent the output as a matrix of numbers. If a DL backend

crashes during this extraction stage, the failure is recorded and

later reviewed and reported. Otherwise, the Output comparator
performs pairwise comparisons of the output for each model

evaluated on different backends to detect inconsistencies.

Once an inconsistency is detected, CRADLE performs the

localization phase. Specifically, the Hidden states extractor
records hidden states of each inconsistent model on different

backends. These hidden states are fed to the Inconsistency
localizer, which produces localization maps where significant

spikes in deviations propagating between hidden states on

different backends are highlighted, indicating faulty locations.

To detect and localize cross-backend inconsistencies and

bugs effectively, we need to address two main challenges:

1. How to determine if a model’s outputs with two
backends are inconsistent? Since different backends optimize

the computational process differently, the results of the same

calculation are almost always slightly different [28]. A naive

approach that expects the output to be identical will detect

inconsistencies for practically all models on all backends,

which will not be useful for identifying bugs in DL systems.

As shown by our experiment, Theano and CNTK backends

always output slightly different values (the differences vary

from 10−5 to less than 10−10).

It is difficult to know how big of a difference indicates a

bug-revealing inconsistency, due to the diversity of models,

DL tasks, and datasets. It is not possible to have a single

threshold to distinguish between bug-revealing inconsistencies

and uninteresting inconsistencies for all models and datasets.

For example, LeNet1, a model performing a simple image

classification task has an average top-1 confidence level of
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95%. This means that for this model, a small variation (e.g.,

a change in confidence level from 95% to 80%) is unlikely

to make the label change. On the other hand, Betago is a

model performing a complex task (i.e., playing Go). For this

model, the average top-1 confidence level is only 60%. In

this case, the same output variation (from 60% to 45%) might

change the predicted label. Therefore, different models need

different thresholds. Determining the correct threshold is a

challenging problem as it depends on many parameters (e.g.,

dataset, model structure, training, etc.).

To address this challenge of identifying bug-revealing incon-

sistencies without the need for complex hard-coded heuristics,

we use two distance metrics (refer to later sections for details)

that emphasize the deviation between the output of both

backends and the ground truth. These metrics effectively

differentiate bug-revealing inconsistent runs from consistent

runs and uninteresting inconsistent runs.

For these metrics, we compare the differences of outputs

against the ground-truth instead of comparing individual out-

puts directly to the expected output. Recall that it is difficult

to obtain the expected output as explained in the Introduction.

We cannot directly compare the output of one backend to

the ground truth to detect bugs because when one backend

produces a wrong label it does not necessarily indicate a bug

in the backend, as it is common for DL models to produce

incorrect labels for some inputs (e.g., due to the limitation of

the algorithm/model, not a bug in the implementation).

2. How to precisely localize the source of an inconsistency?
After an inconsistency is detected, the internal source of

the inconsistency is often challenging to localize, due to the

complexity of DL backends. For example, one run that exposes

the inconsistency bug in Figure 2 contains 781 invocations

of backend functions that have complex mathematical con-

nections. We propose a novel localization and visualization

method that localizes faulty functions in the backend library

which introduces inconsistencies by analyzing internal input

and output of these backend functions and localizing the error

spikes that propagate through the execution graph.

B. Detection Phase

In the detection phase, CRADLE identifies pairs of back-

ends that are inconsistent for a specific model.

Output extractor takes as input a pre-trained model and

its corresponding validation instances. It loads the provided

weights (no training required) and performs classification or

regression tasks using the loaded models. It produces the

model output using all backends under test for each input

instance. For example, comparing 5,000 validation instances

and one associated model on 3 different backends will generate

15,000 output vectors. During this phase, CRADLE detects

crashes on specific backends and we report them to developers.

Output comparator loads previously stored output matrices

and performs pair-wise comparisons for each given validation

instance to detect inconsistencies. These pair-wise compar-

isons are between a specific pair of backends using a particular

model, its associated validation data, and a particular Keras

version. The Output comparator then groups inconsistencies

into unique inconsistencies. We use two metrics to compare a

pair of backends—the Class-based distance for classification

and the MAD-based distance for regression.

A straightforward metric to use is top-k accuracy on the

entire validation set. Top-k accuracy calculates the portion of

correct instances—an instance’s ground-truth label is within

the top-k predicted labels—among the total number of in-

stances classified. Top-k accuracy could fail to identify certain

inconsistencies. For example, the Dog species classification

model, affected by the presented Batch Normalization bug,

induces inconsistency between Tensorflow and CNTK. How-

ever, when ran on those backends, the model has identical

top-1 (29.9%) and top-5 (64.4%) accuracies.

To overcome this problem, we calculate the portion of

inconsistent input instances over the validation set. Because of

the way inconsistent input instances are detected, we will not

aggregate inconsistencies in the same way as top-k accuracy

metric. In the following sections, we introduce Class-based

and MAD-based distances as the ways to measure the severity

of inconsistent instances. Once we have the severities of all

validation instances between a pair of backends, we can apply

two thresholds to see if that pair of backends is inconsistent.

Class-based distance is specific to classification models. It

calculates the distance between two classifications based on

the relative distances of the ground-truth label ranks in the

output matrices. Here, we leverage the mapping between the

syntax of the model output (the output vector) and its semantic

meaning (the classification). Without this mapping, it would

be difficult to come up with a universal metric and threshold

that could work across different model configurations (e.g.,

the output vector size of a classifier can vary from 1000 for

ImageNet models to 1 for binary classifiers).

A classification model with N classes outputs a vector of

size N containing confidence level pi corresponding to class

Ci, where 0 < i ≤ N . Confidence level pi shows how

confident the model is in predicting class Ci as the correct

label for that input instance. Given an output vector of a

classification model as Y and the ground-truth label C of the

input, we calculate the score of classification σC,Y as:

σC,Y =

{
2k−rankC,Y if rankC,Y ≤ k

0 otherwise
(1)

rankC,Y is the rank of the ground-truth label C in the

classification Y . For example rankC,Y = 1 if C is predicted

as top-1 in classification Y . The score σC,Y emphasizes on

classifications that predict ground-truth label with higher rank.

We consider rankC,Y out of top-k not interesting.

Given the confidence level output of the same model

on a different backend as Y ′, the Class-based distance

D CLASSC,Y,Y ′ is calculated as the absolute difference be-

tween two scores σC,Y and σC,Y ′ :

D CLASSC,Y,Y ′ = |σC,Y − σC,Y ′ | (2)
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TABLE I: Example of inconsistencies found using the Class-

based metric. TF is TensorFlow and CN is CNTK.

Inconsistency pattern

Id Keras Backends Model 16 15-8 7-4 3-2 1 0

1 2.2.2 TF-CN Xception 10 202 147 100 85 4456
2 2.2.2 TF-CN NASNetLarge 5 132 86 77 65 4635
3 2.2.1 TF-CN Xception 10 202 147 100 85 4456
4 2.2.1 TF-CN NASNetLarge 5 132 86 77 65 4635

We define our Class-based metric based on the top-k rank-

ings with k = 5. For example, in Figure 2, σpetridish,YTF
=

25−1 = 16 as the rank of petri dish label by the TensorFlow

backend rankpetridish,YTF
is 1. Similarly, σpetridish,YCN

= 0
because petri dish is not in CNTK’s top-5 for that image.

Then the Class-based distance D CLASSpetridish,YTF ,YCN
is

16. If another backend generates the ground-truth label in rank

3, then its σpetridish,Y is 4, and D CLASSpetridish,YTF ,Y is

12. The maximum value of D CLASSC,Y,Y ′ is 16, and the

minimum is 0 with k = 5.

Mean absolute deviation (MAD)-based distance is a metric

that could be used for both classification and regression mod-

els. However, the main purpose of the MAD-based distance

is detecting inconsistencies in regression models where our

Class-based distance would not work.

Given two predicted vectors Y and Y ′ of size N for a

pair of backends using a model and an input instance, we

first calculate the Mean Absolute Distance (MAD), δY,O and

δY ′,O, between the two output vectors and the ground-truth

vector O. δY,O is calculated as followed:

δY,O =
1

N

∑N

i=1
|Yi −Oi| (3)

The MAD-based distance D MADO,Y,Y ′ is calculated as:

D MADO,Y,Y ′ =
|δY,O − δY ′,O|
δY,O + δY ′,O

(4)

MAD is used here (instead of the more common Euclidean

distance) because it does not inflate due to outliers.

For example, Dave-2 [29] is a model that outputs the

steering angle (measured in radian) of a car given a dashboard

camera image as input. For a given input image I, the recorded

(ground-truth) steering angle is O = 0.0. Using the same

image as input, Dave-2 outputs Y = 0.4 and Y ′ = −0.1 using

two different backends. We have δY,O = |0.4 − 0.0| = 0.4
and δY,O = | − 0.1 − 0.0| = 0.1. We can then calculate

D MADO,Y,Y ′ as |0.4− 0.1|/(0.4 + 0.1) = 0.6. MAD-based

metric produces values between 0 and 1.

Before we can use this metric with classification models, we

first need to convert the ground-truth labels to one-hot vectors.

In multi-class classification, a one-hot vector is a vector of all

zero except the value at the ground-truth label index is 1. This

vector indicates a perfect classification with 100% confidence

in the ground-truth label.

Identifying Inconsistencies: Given a model (and its valida-

tion set), two backends, and one version of Keras, we consider

this pair of backends inconsistent if at least p% of validation

input instances cause the distance between those two sets of

output to be larger than a given threshold T (TC denotes the

threshold for the Class-based metric and TM for MAD-based

metric). We call such input instances inconsistency-triggering.

For Class-based metric with k = 5, using threshold TC =
16 is the most strict. This means that an input instance is

considered inconsistency-triggering if one backend ranks the

ground-truth label top-1, while the other ranks it outside of the

top-5. Using threshold TC = 1 means that an input instance is

inconsistency-triggering if there is any difference in the top-5

labels of the two backends and the ground-truth label is in the

top-5 of at least one backend (e.g., if one backend ranks the

ground truth label in the top-5, while the other backend ranks

it outside of the top-5). In Figure 2, the petri dish image is an

inconsistency-triggering input instance.

Similarly, for MAD-based metric, using TM = 1 is the most

strict. For example, with the Dave-2 model, an input image is

inconsistency-triggering with TM = 1 if it causes one backend

to predict an angle matching the recorded angle exactly, while

causing the other to predict a different angle. On the other

hand, using TM = 0 means that we consider any input image

inconsistency-triggering.

The stricter the thresholds are the fewer inconsistencies are

detected, however, the detected inconsistencies will be more

severe (higher TC or TM means each inconsistency-triggering

instance is more severe, while higher p means more output

instances are inconsistent). If covering all inconsistencies is

the priority, lower and more relaxed thresholds should be used

(e.g., the recommended thresholds in Section IV). However,

if finding severe bugs that significantly affect models’ accu-

racies is the priority, then stricter settings would ensure that

those severe bugs will be found and fixed quicker with less

inspection effort.

Identifying Unique Inconsistencies: Table I shows four ex-

amples of inconsistencies. These inconsistencies are identified

using the Class-based metric. Column ‘7–4’ is the number

of validation input instances that cause the two backends to

have Class-based distances of 7, 6, 5, or 4. Inconsistency in

row one (inconsistency 1) indicates that the model Xception is

inconsistent between TensorFlow and CNTK (Keras 2.2.2) on

its associated ImageNet validation set where 10 input instances

trigger a Class-based distance of 16, 202 instances trigger

distances in the range of 15–8, etc.

The same inconsistencies may exist in different Keras

versions (different interface versions in the backend). To

avoid finding duplicate inconsistencies, the output comparator

also automatically groups certain inconsistencies together into

unique inconsistencies based on inconsistency patterns.

An inconsistency pattern is the distribution of the distances

over the entire validation data. It expresses the characteristics

of the inconsistencies. Table I shows two unique inconsistency

patterns: pattern 1 (for inconsistencies 1 and 3) and pattern 2

(for inconsistencies 2 and 4).

Since the range of MAD-based metric is between 0 and 1,

we choose 5 equal sized bins between 0 and 1 to calculate

the inconsistency patterns. Similar to Class-based metric, the

number in bin 0.6-0.8 is the number of input instances that
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trigger the MAD-based distance 0.6 ≤ D MAD < 0.8 for

each pairwise comparison.

C. Localization Phase:

Given each unique inconsistency, the Hidden states ex-
tractor and the Inconsistency localizer produce a localization

map. A localization map is an execution deviation graph of

two implementations (backends), which highlights inconsistent

executions (hidden states) of a function (layer type), pointing

to potential faulty functions in one of the backends.

Recall that an execution of a model produces one execution

graph (Section II). Each execution graph contains connected

layers, where the output of one layer is the input of subsequent

layers. Given a model and an input instance, there is one

execution graph for each implementation of libraries. An

execution deviation graph is a graph that represents the differ-

ences between two execution graphs of the same model. Since

both execution graphs are from executions of the same model,

they have the same structure i.e., the network structure. Thus,

the execution deviation graph also has that same structure

but contains the deviation between each pair of layer type

executions. We describe the deviation calculation below.

For each unique inconsistency, we only perform localization

on the most inconsistent input instance. The most inconsis-
tent input instance triggers the largest Class-based distance

(classification tasks) or MAD-based distance (regression tasks)

between the output of two backends.

Hidden states extractor produces execution graphs in a

similar way to the Output extractor described previously. Both

execute the model on validation input instances to extract

output. However, the latter also retrieves the intermediate

function output (hidden state) of each hidden layer (internal

execution) in the model. Hidden states are presented as vectors

of floating point numbers.

Inconsistency localizer produces a localization map for each

unique inconsistency by first extracting the execution deviation

graphs. It does this by calculating the mean absolute deviation

(MAD) between each pair of corresponding hidden state

from two executions of the same layer type on two different

backends. It is important not to confuse the usages of MAD

here to the MAD-based metrics mentioned previously. Here,

MAD is used to calculate the distances between corresponding

intermediate outputs of hidden layers to represent the internal

deviations of two execution graphs. Given the intermediate

states SL and S′L of layer L executed on two backends, the

deviation is calculated using Equation 3 as δSL,S′
L

.

Due to the sequential nature of a model, a noticeable MAD

deviation at a particular layer does not indicate inconsistency

at that layer as deviation can propagate through the execution

graph and get amplified along the way. Ideally, we want to

localize the source of the inconsistency. To do this, the Incon-
sistency localizer calculates the rate of change in deviation

between consecutive function executions. Finally, it generates

the localization maps by highlighting functions in the execu-

tion deviation graph that have inconsistent executions.

To calculate the rate of change, we first need to calculate

the MAD deviation for all executions (layers output) in the

set pre(L) as δSl,S′
l

with l ∈ pre(L) (pre(L) is the set of in-

bound layers which hidden states are the input to layer L). We

calculate the representative deviation of inbound executions,

δpre, simply as the maximum deviation:

δpre = max
l∈pre(L)

(δSl,S′
l
) (5)

The rate of change in deviations at layer L is:

RL =
δSL,S′

L
− δpre

δpre + ε
(6)

We use a smoothing constant ε = 10−7 to prevent RL = ∞
in the case where δpre = 0 (e.g., L is the first layer).

We call RL the inconsistency introduction rate of a layer

L, i.e., how much diversion layer L (executions of a pair

of function implementations) introduces due to inconsistent

implementations. RL values of all layers provide an overall

picture of how the inconsistency is introduced through the

model so that we can localize the function that is the source of

the inconsistency. To generate the localization map, we overlay

the MAD and RL values for each layer on the model structure

graph (e.g., maps in Figure 4). A node, representing a layer L,

shows the layer type (i.e., low-level transformation function),

the MAD value δ, and the inconsistency introduction rate RL.

We select the third quantile of RL distribution of all nodes in

each map as the highlighting threshold. We highlight a node

red if its RL is higher than this threshold.

IV. DATASETS AND EXPERIMENTAL SETTINGS

Trained Models and Datasets: To evaluate CRADLE, we

collect 11 public datasets and 30 DL models that are pre-

trained from these datasets. Table II lists the datasets.

We collected the models by looking for pre-trained models

compatible with Keras from prior work and GitHub. To avoid

low-quality models (e.g., class projects and simple demos),

we only examine repositories with at least two stars. Overall,

we collected 13 ImageNet [26] models (Xception, VGG16-19,

ResNet50, InceptionV3, InceptionResNetV2, MobileNetV1-

V2, DenseNet121-169-201, NASNetLarge-Mobile [8]), 3 self-

driving models used in previous work (DaveOrig-Norminit-

Dropout [19], [29]), 3 MNIST models (LeNet1-4-5 [30]), and

various models trained for other tasks (Thai number detector

– ThaiMnist [31], Go game player – Betago [32], anime

faces recognition – AnimeFaces [33], cat and dog classifiers –

CatDog(Basic, Augmented) [34], [35], dog species classifier –

Dog [36], gender detection – Gender [37], Pokemon classifier

– Pokedex [38], and GTSRB traffic sign recognition – Traffic-

Signs(1, 2, 3) [39]–[41]). We use provided validation dataset

for each model to run our experiment. For ImageNet, we use

a random sample of 5,000 images from over 80,000 provided

cropped validation images.

Experimental settings: We run CRADLE on 15 versions

of Keras (2.0.5–2.2.2). For the low-level libraries, we use

the latest versions of CNTK (2.5.1), Theano (1.0.1), and
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Fig. 4: Batch normalization bug’s localization map for InceptionResNetV2 between TensorFlow and CNTK with Keras 2.2.0.

TABLE II: Number of inconsistencies found by CRADLE.

The numbers outside and (inside) brackets are the unique and

(total) number of inconsistencies respectively. TF is Tensor-

Flow, TH is Theano, and CN is CNTK.

Dataset Instances # of Inconsistencies

TH-TF TF-CN CN-TH

ImageNet 5,000 10(34) 21(54) 18(46)
Driving 5,614 3(9) 3(12)
MNIST 10,000 3(9) 3(12)
Thai MNIST 1,665 1(3) 1(4)
KGS Go game 12,288 2(14) 3(12) 3(15)
Anime Faces 14,490 1(5) 1(6)
Dogs VS Cats 832 2(6) 2(8)
Dog species 835 3(8) 3(9)
Faces 466 2(14) 3(8) 6(15)
Pokedex 1,300 1(14) 1(3) 2(15)
GTSRB sign 12,630 2(14) 2(5) 2(7)

Total
18(95) 42(117) 44(149)

104(361)

TensorFlow (1.7.0). For regression models, i.e., Dave variants,

we only use the MAD-based metric because the Class-based

metric does not apply. For the classification models, we use

both Class and MAD-based metrics. Some models are not

supported with older versions of Keras and result in crashes.

Since the crash is the expected behavior, we do not consider

them as bugs and exclude those runs from our experiment.

We vary the thresholds (TC , TM , and p) and found the

optimal setting (covering the most inconsistency without false

positives and false negatives) for Class-based metric are TC =
8 and p = 0% and for MAD-based metric are TM = 0.2 and

p = 0%. We use cross-validation with 80-20% of models to

confirm that the thresholds consistently perform across all 5

folds. These are the thresholds we use in RQ1 and RQ2.

Hardware and Infrastructure: We utilize multiple Anaconda

environments to switch between multiple versions of Keras

and different backends. We run all experiments on an Intel

Xeon E5-2695 machine with 128 GB of RAM and two Nvidia

Titan XP GPUs. For the performance analysis, we run the

output extraction step utilizing a single GPU.

V. RESULTS

A. RQ1: Can CRADLE detect bugs and inconsistencies in
deep learning backends?

CRADLE detects 12 bugs in DL software for 28 out of

30 models that cause 104 unique inconsistencies. The 12

bugs (9 have been fixed) consist of 7 inconsistency bugs (3

previously unknown, 2 out of 3 have already been confirmed

by developers, e.g., the bug in Figure 2 has been fixed by de-

velopers after we reported it), and 5 crash bugs that crash either

Keras or one of the backend libraries. None of the 12 bugs

TensorFlow: groom
Theano: Indian elephant

TensorFlow: banana
CNTK: tennis ball

TensorFlow: hen
CNTK: Arabian camel

Fig. 5: Inconsistency-triggering inputs for the pooling bug (left

column), the padding bug (middle column), and the batch

normalization bug (right column). Correct backends are bold.

is detected by the test cases that come with Keras (including

the interface), which does simple unit and integration testing.

The results demonstrate that cross-backend inconsistencies are

frequent and CRADLE is effective in detecting them.

Our approach does not report false inconsistencies as it is

a dynamic approach: for each inconsistency, we have inputs

that trigger two backends to disagree. Theoretically speaking,

some true inconsistencies may indicate a false bug, as our

approach may identify uninteresting inconsistencies (e.g., nat-

ural computation difference explained in Section III-A). In our

experiment, all 12 bugs are real (i.e., no false bugs detected).

Inconsistencies and inconsistency-triggering input: Using

the Class-based metric on classification tasks and the MAD-

based metric on regression tasks, CRADLE detected a total

of 361 inconsistencies. Based on the inconsistency patterns,

CRADLE automatically groups the inconsistencies into 104

unique inconsistencies (Section III-B).

Table II shows the number of inconsistencies found by

CRADLE for each dataset and pair of backends. For example,

CRADLE detects ‘21(54)’ inconsistencies between the two

backends TensorFlow and CNTK triggered by 13 ImageNet

models. Here ‘21(54)’ indicates that CRADLE detects 54

inconsistencies which map to 21 unique inconsistencies cor-

responding to 21 unique inconsistency patterns. Table I shows

two of such patterns (the first and second rows).

On average, these inconsistencies are triggered by 21.9%

of input instances in a dataset (22.2% for classification tasks

and 13.9% for regression tasks). Figure 5 provides examples

of inconsistency-triggering inputs. The image of a groom was

identified correctly by TensorFlow but incorrectly as an Indian

elephant by the faulty Theano. In some extreme cases, the

faulty TensorFlow backend accidentally labels an image of

bananas “correctly” while CNTK identifies it as tennis balls.

Inconsistency bugs: We use CRADLE to localize the source

function of all 104 detected unique inconsistencies (detailed
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TABLE III: Bugs found by CRADLE. ‘# Inc. bugs’ indicates the number of inconsistency bugs per root inconsistency.

Root inconsistency Localized layers (functions) Affected backends # Affected models # Inc. bugs

Batch normalization BatchNomalization CNTK 11 2
Padding scheme Conv2D, DepthwiseConv2D, SeparatableConv2D TensorFlow, Theano 15 2
Pooling scheme AveragePooling2D Theano 3 1
Parameter organization Trainable convolution CNTK, Theano 18 2

localization results are in Section V-B). We find that they

are caused by 7 bugs in the backend libraries (Table III).

Some bugs have the same root inconsistency because they are

either different bugs in the same function or affect several

backends which required multiple fixes to multiple backends.

For example, in addition to the batch normalization bug

we presented earlier, we found another bug in the batch

normalization function affecting an older version of Keras.

We manually check the fault localization maps for each

cluster of inconsistencies and confirm whether it indicates

a bug. If we find a corresponding bug fixing commit in a

more recent version, we consider the bug has been fixed by

developers. If not, we consider it previously unknown. Once

two authors agree that it is a bug, we report it to developers.

If the same invocation of functions is identified for multiple

bugs that are triggered by the same model in the same pair

of backends across successive Keras versions (which affect

the interface code between Keras and low-level libraries),

we consider them one unique bug. However, if the bugs

are in nonconsecutive versions, and the inconsistency pattern

changes for some versions of Keras, this indicates that the

issue was partially fixed (or a new bug introduced) in some

Keras versions, then we consider them different bugs (e.g., the

new inconsistency is likely to be a regression bug).

In addition to the batch normalization bug in Figure 2, we

detail two additional confirmed bugs that CRADLE found.

Padding scheme bugs: Padding artificially increases the

size of an input image so that a kernel function can be

applied to all the pixels of the original image and produces

an output of the same shape as the input. The SAME padding

scheme behaves inconsistently across backends when applied

on different combination of odd or even sizes of input and

kernel. This creates a shift in the input that propagates through

the model and caused the model to sometimes completely miss

some of the shapes it was trained to recognize. Eventually,

it results in inconsistencies between Theano or TensorFlow

(depends on the different combination of input and kernel

sizes) and the other two backends. The middle column of

Figure 5 shows an example of input images revealing this

bug. Although it has not been fixed yet in the interface

source code, this bug has been confirmed to be a significant

problem because various models (i.e., ResNet50, MobileNet,

NASNetsLarge-Mobile, and MobileNetV2) have been updated

by their developers to include workarounds that makes their

models consistent across backends.

Pooling scheme bug: This bug in Theano backend causes

Gender, InceptionResNetV2, and InceptionV3 models to mis-

behave. In Keras 2.1.4 and earlier, the 2D pooling layer

in Theano interface determined the average pooling scheme

based on the padding scheme. If the padding is SAME, it

- if padding == ’same’:
- th_avg_pool_mode = ’average_inc_pad’
- elif padding == ’valid’:
- th_avg_pool_mode = ’average_exc_pad’
...

- mode=th_avg_pool_mode)
+ mode=’average_exc_pad’)

Fig. 6: Pooling scheme bug fix in pool2d in Theano backend.

used the pooling average_inc_pad scheme which includes

padding in the average calculation. However, if there is no

padding, then they use the average_exc_pad scheme. This

creates inconsistencies for models that use the AveragePooling

layer with SAME padding. Figure 6 presents the fix where

average_exc_pad is used regardless of the padding scheme.

Crashes bugs: Excluding crashes caused by unsupported

models, we encounter 86 crashes out of 1173 possible runs.

We identified 3 Keras bugs (happened with all backends)

and 2 specific backend bugs. In total, 4 of the crash bugs

have already been fixed and a workaround has been added to

the crashing model to address the last issue. They are often

caused by incorrect object’s shape (e.g., incorrect weight or

convolution kernel shapes).

Comparison between Class-based metric and top-k accu-
racy: One alternative to our Class-based metric is top-k accu-

racy. To measure its effectiveness in detecting inconsistencies,

we integrate it into CRADLE by calculating the top-k accuracy

differences between pairs of backends. A pair is considered

inconsistent if the accuracy difference is larger than a threshold

TAC . We vary k (1 to 5) and accuracy threshold TAC (between

0% and 50%).

Using TAC = 0% and k = 1, the accuracy metric detects

the most number of inconsistencies (305) but still misses 35

inconsistencies found by our Class-based metric. These are 35

valuable test cases that developers could use to test, localize,

and fix detected bugs. In addition, our Class-based metric

enables the generation of inconsistency patterns which help

remove duplicates to reduce 340 detected inconsistencies to

98 unique inconsistencies. This reduction is not possible with

top-k accuracy. The results show that our Class-based metric

is more effective than top-k accuracy.

MAD-based metric usage for classification models: To

demonstrate the usefulness of our Class-based metric, we

compare the ability of both metrics in detecting unique in-

consistencies for classification models.

Using the MAD-based metric for classification tasks, CRA-

DLE can only find 10 unique inconsistencies, 4 of which are

inconsistent in confident level but do not trigger inconsistent

classifications. On the other hand, with the Class-based met-

rics, CRADLE correctly identifies 98 unique inconsistencies

in classification models, including all inconsistencies correctly
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found using the MAD-based metric. These results show that

Class-based metric help CRADLE find more inconsistencies

with no false positive.

B. RQ2: Can CRADLE localize the source of inconsistencies?

For each of the 104 unique inconsistencies, CRADLE

generates a localization map for the most inconsistent input

instance (Section III-C). By focusing on the first localized

inconsistent execution and executions with high inconsistency

introduction rates in each map, we manually cluster the 104

unique inconsistencies into 7 bugs. CRADLE’s localization

maps enable us to do this clustering. This manual process

takes 1–2 hours per bug. A technique to automatically cluster

unique inconsistencies based on the first localized function

executions or similarity between localization maps remains as

future work.

Overall, CRADLE highlights executions that are relevant

to the causes of inconsistencies for all 104 unique incon-

sistencies. For 4 of the bugs, the first localized inconsistent

executions are exactly the executions of faulty functions that

were fixed by developers. This suggests that the localization

technique is effective in pinpointing the faulty functions, which

should help developers to understand and fix the bugs. For

example, the reduction is 13 to 1 in one case, meaning that

the developers only need to examine one function instead of

13 functions with complicated formula and interactions to

understand and fix the bug. When we consider all (instead

of only the first) localized inconsistent executions, the faulty

methods are invoked in one of the localized inconsistent

executions for 5 of the bugs. For the fifth bug, this represents a

reduction of 22–44% for the number of functions to examine.

For the remaining 2 bugs, the localized inconsistent executions

are related to the bug fixes. In fact, the localized executions

helped us tremendously in understanding the bugs so that we

were able to write good bug reports.

Figure 4 shows a part of a localization map for the batch

normalization bug (for the unique inconsistency involving

InceptionResNetV2, TensorFlow and CNTK backends, and

Keras 2.2.0). The input image shown is the most inconsistent

input instance for this unique inconsistency. The Dense box

shows the output: “jean” from TensorFlow, and “mailbag”

from CNTK, while the ground truth is “jean”. The map

includes 781 invocations of backend functions, for presentation

purposes, 772 of which are omitted. Each box represents an

invocation of a neural network function, the arrows indicate the

flow of data. Function names are indicated in each box, while

δ is the MAD distance between the hidden states (defined

in Equation 3), and R is the inconsistency introduction rate

(defined in Equation 6). In this example, executions of function

batch_normalization are localized as faulty (shown in

red). The white boxes indicate executions with low or negative

R (i.e., they are unlikely the source of inconsistency). This

map correctly highlights the earliest invocation of the function

batch_normalization as the source of inconsistency. We

examine localization maps for the other affected models (e.g.,

InceptionV3, DenseNets (121, 169, 201)) and notice that they

Fig. 7: Pooling scheme bug’s localization map for model

InceptionV3 between TensorFlow and Theano with Keras

2.1.4 on the “groom” input image in Figure 5.

all point to the batch_normalization function. We reported

this bug to developers and it has been fixed in Keras 2.2.1.

Figure 7 shows a section of the localization map highlight-

ing the faulty executions for pooling scheme bug with model

InceptionV3 between TensorFlow and Theano on Keras 2.1.4.

The first highlighted execution indicate correctly the source of

this unique inconsistency as the function average_pooling.

We look at the source code of average_pooling which

points to the faulty pool2d function in the Theano backend.

Figure 6 shows the fix (for Keras 2.1.5) in the Theano backend

source code where the average pooling scheme is set to

average_exc_pad regardless of the padding scheme.

C. RQ3: What is CRADLE’s detection and localization time?

We measure the execution time of CRADLE on the latest

version of Keras (2.2.2) using all 30 models. Overall, CRA-

DLE’s detection and localization time is quite reasonable with

a typical end-to-end execution time lower than 5 minutes.

The running times of Output extractor and Hidden states
extractor are dominantly the model execution times, which

depends on the model complexity, validation dataset size, and

performance of the backend. The extractor is slow in rare

cases, e.g., nearly 10 hours with the large NASNetLarge model

containing over 1,000 layers. However, the typical running

time is within minutes with the median of less than 2 minutes.

The Output comparator and Inconsistency localizer are

much faster with the median running time of less than 20

seconds and the maximum of less than 5 minutes. The running

time is independent of the backend implementation; it depends

on the dataset size and the model complexity respectively.

VI. LIMITATIONS AND THREATS TO VALIDITY

Since we focus on detecting bug-revealing inconsistencies,

CRADLE may miss inconsistencies that cause internal errors

but not failures (i.e., incorrect external behaviors). This is our

design choice to avoid detecting too many false alarms.

We assume that the same algorithms are implemented with

similar specifications in all backends due to the interchange-

ability of DL backends. In theory, it is possible for our

technique to find false positive inconsistencies because of this

assumption. However, our results show that the inconsistencies

found by our approach indicate real bugs because 11 of them

have already been confirmed or fixed by developers.
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Our approach might not be generalizable to other models

or DL libraries. To mitigate this threat, we use 30 models

extracted from different GitHub projects and evaluate our

approach on Keras, the most popular high-level DL library

[12], and three popular backends. Our approach of detecting

and localizing inconsistencies should be applicable to other

models and libraries with little work.
It is possible that some complex DL systems contain non-

deterministic layers so that given the same input the output

might be slightly different. To mitigate this issue, we make

sure none of the layers contains intentional sources of ran-

domness and we apply two metrics that are designed to be

robust even in the existence of small inconsistencies.
Our approach uses pre-trained models, which is our design

choice in believing that those pre-trained models that are used

by real users are likely to cause bugs that developers care.

Alternatively, we can use dummy models or mutated models

to test backends in order to find more bugs, which remains as

future work.

VII. RELATED WORK

To the best our knowledge, we are the first to detect and

localize inconsistencies between DL backends.

Testing machine learning (ML) libraries: Recently, au-

tomatic testing of ML libraries becomes active [42]–[44].

Srisakaokul et al. [43] detect inconsistencies between multi-

ple implementations of common ML algorithms (i.e., kNN

or Naive Bayes (NB)). This approach uses majority votes

to estimate the expected output. However, it requires many

implementations of the same algorithm (19 kNNs and 7 NBs

used) with the assumption that most of them are correctly

implemented. In contrast, CRADLE performs pairwise com-

parisons, which as shown by our experiments, detects incon-

sistencies without knowing the expected output and works

with a minimum of two implementations. Another major

difference is that Srisakaokul et al. define deviation based on

the inconsistency of top-1 classifications without comparing

them to the ground truth. CRADLE, on the other hand,

define inconsistency as deviations in predicted ranks of the

ground-truth label because we want to focus on inconsistent

implementations that affect the performance of DL models

on real world validation dataset. Dwarakanath et al. [42] test

ML libraries by applying transformations on the training and

testing data to detect inconsistencies. However, they were only

able to identify artificially injected bugs. Dutta et al. [44] used

fuzzing to test probabilistic programming systems. None of

these techniques performs localization.

Benchmarking DL Libraries: Liu et al. [20] observe that

the same DL algorithm with identical configurations, such

as training set and learning rate, produces different execution

time and accuracy when trained with different low-level DL

libraries. However, this work aims to benchmark DL libraries,

not to detect or localize inconsistency bugs, as it does not

compare the exact same model on different backends. Since

each model is re-trained on each backend and the training

process contains non-determinism (e.g., the seed for the op-

timization function), small accuracy differences are expected.

DL libraries have been compared in the literature [45]–[49].

However, the prior work focuses on performance comparison

only and does not detect or localize non-performance bugs in

DL libraries.

Adversarial Testing of DL Models: Much recent work

focuses on testing DL models [19], [21]–[25], [50]–[55].

Many techniques generate adversarial examples [21]–[25].

Some work [50]–[52] verifies DL software. DeepXplore [19]

introduces neuron coverage to measure testing coverage in

CNN models. These approaches are orthogonal to our work

as they test the correctness of DL models, while we test

the correctness of the implementations of models in the DL

software libraries.

Differential Testing and Inconsistency Detection: Differen-

tial testing [56] consists of testing whether different compilers

produce the same results. Much work uses differential testing

to find bugs in compilers by comparing the output of multiple

compilers [57]–[59] or different compiler optimization lev-

els [57], [60]. Inconsistency detection has been used in other

domains such as cross-platform [61], [62], web browsers [63]–

[66] or document readers [67]. Our work is a new application

of differential testing and inconsistency detection for DL

software, which has its unique challenges such as identifying

bug-triggering inconsistencies (Section III-A). In addition, we

localize the inconsistencies to the faulty functions.

Debugging and Fault Localization: We are not aware of prior

work that localizes inconsistency bugs in DL libraries, despite

the large volume of debugging and fault localization work for

general software bugs [68]–[75]. While these approaches could

be used to debug DL networks, applying such techniques to

localize faulty functions in DL networks may have unique

challenges such as scalability, which remains as future work.

VIII. CONCLUSION

We propose CRADLE, a new approach to find and localize

bugs in the implementations of DL models by cross-checking

multiple backends. We evaluate CRADLE on three backends

and 30 pre-trained models and find 12 bugs and 104 unique

inconsistencies in the backends for 28 models. This paper

calls for attention for testing DL implementations not just

DL models. In the future, we plan to design approaches to

identify bugs even if they do not cause observable differences

in backends. It is also conceivable to expand the set of trained

models with mutants for CRADLE to find more bugs.
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