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Deep learning (DL) is pervasive

Machine translation Alzheimer’s disease diagnosis

Autonomous driving cars Virtual assistance
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DL system

Correct DL systems require correct implementations
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Algorithms / Models Implementations
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DL libraries are hard to test and debug

● Intrinsic complexity
● DL system expected output is 

unknown
○ Correct programs should output 

expected output.
○ The ground truth is not the expected 

output because models are not perfect.
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MobileNetV2 - TensorFlow: banana
Ground-truth: banana

MobileNetV2 
Expected output: tennis ball



Idea: Differential testing

InceptionResNetV2 Model

An inconsistency

A “petri-dish” image

TensorFlow classification
TensorFlow backend

InceptionResNetV2TensorFlow

InceptionResNetV2CNTK

CNTK backend

CNTK classification
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● The CNTK batch normalization formula was implemented 
incorrectly.

● The developers fixed the bug after we reported it.

Batch_normalization bug

6

-   return(x-mean)/(C.sqrt(var)+epsilon)*gamma+beta 
+   return(x-mean)/ C.sqrt(var +epsilon)*gamma+beta 



Differential testing: Challenges

● How to compare two implementations?
○ What metric to use?
○ What should be considered bugs?

● How to localize the faults?
○ How to find faults in the complex model executions?
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Differential testing: Ideas

● Two metrics measure the severity of the inconsistency for 
a set of input instances.

● Localization map compares intermediate states of DL 
models for fault localization.

8



CRADLE: Overview
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CRADLE: Detection phase
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Output extractor
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● Executes the models on different backends to obtain output
● Detects crashes

InceptionResNetV2 Model
An “petri-dish” image

InceptionResNetV2CNTK

CNTK backend

CNTK classification



MAD-based (Regression)CLASS-based (Classification)

Output comparator: Distance metrics

12

Metrics calculate difference relatively to the ground-truth.



σpetri-dish,TF = 25-1 = 16

CLASS-based distance example
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TensorFlow CNTK

σpetri-dish,CN = 0

|σpetri-dish,CN - σpetri-dish,CN| = 16

Rankpetri-dish,TF = 1 Rankpetri-dish,CN > 5

Top-5 classification



Inconsistency triggering input (ITI)
● An input instance triggers a distance larger than a 

threshold (TC and TM)
○ E.g.,: “petri-dish” image is an ITI given TC = 8.
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Theano: Indian elephant
TensorFlow: groom

CNTK: groom

TensorFlow: banana
CNTK: tennis ball

Theano: tennis ball

CNTK: Arabian camel
TensorFlow: hen

Theano: hen



Detect inconsistency

● An inconsistency is a pair of implementations that triggers 
more than p% of ITIs over the validation set
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InceptionResNetV2TensorFlow

InceptionResNetV2CNTK
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6

0

Validation set

TC = 8

D_CLASS

p = 10%



CRADLE: Localization phase

16

Localization phase

Detection phase

Output 
extractor

Crash bugs

Model output Unique 
inconsistencies

Trained models
&

 Validation data

Hidden states 
extractorHidden statesInconsistency 

localizer
Localization 

maps

Output 
comparator

Inconsistency 
bugs



Hidden state extractor

● The “most inconsistent” input per inconsistency is used.
● The network structure + hidden states are considered as 

the network execution graph.
● Hidden states are output of hidden layers.
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BatchNormConv2D GloAvgPool

776 
layers 
omitted

Activation

Dense

TensorFlow: jean

Input: jean Conv2D BatchNorm Activation GloAvgPool

InceptionResNetV2 execution graph on TensorFlow



MAD differences
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BatchNormConv2D GloAvgPool

776 
layers 
omitted

Activation

Dense

TensorFlow: jean

Conv2D BatchNorm Activation GloAvgPool

BatchNormConv2D GloAvgPool

776 
layers 
omitted
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CNTK: mail bag

Conv2D BatchNorm Activation GloAvgPool

Input: jean

BatchNorm
𝛿 = 0.0002
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𝛿 = 0.0

GloAvgPool
𝛿 = 0.0860

Activation
𝛿 = 0.1480
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omitted
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Inconsistency introduction rate

● Calculate the rate of change
○ ∊ prevent division by zero

● Highlight executions with R 
above the third quantile

InceptionResNetV2 localization map between TensorFlow and CNTK
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BatchNorm
𝛿 = 0.0002
R = 2048.6

Conv2D
𝛿 = 0.0
R = 0.0

Activation
𝛿 < 0.0001
R =-0.5497

Conv2D
𝛿 = 0.0003
R = 2.3009

GloAvgPool
𝛿 = 0.0860
R =-0.4191

772 
layers 
omitted

Activation
𝛿 = 0.1480
R =-0.5173

Dense
𝛿 = 0.0004
R =-0.9950

TensorFlow: jean
CNTK: mailbag

Input: jean

Conv2D
𝛿 = 0.0138
R = 0.5530

BatchNorm
𝛿 = 0.3067
R = 21.186
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104 unique inconsistencies

3 backends

28 models 11 datasets  

7 inconsistency bugs  5 crash bugs

Result



fx
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7 inconsistency bugs

Batch normalization BatchNormalization

Padding scheme Conv2D variant

Pooling scheme AveragePooling2D

Parameter organization Trainable Conv



RelevantOne ofFirst
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Localization is helpful

Relevant to the causes of all 104 unique inconsistencies



Conclusion

● CRADLE applies differential testing on DL implementations 
and localize faulty functions by tracking error propagation.
○ Detects 7 confirmed inconsistency bugs and 5 crash bugs
○ Helps find root causes of all 104 unique inconsistencies using 

localization maps 
● Inconsistencies are common and widespread.
● We call for more attention to testing of DL libraries.
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DL system overview
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High-level
Libraries

Hardware

Low-level
Libraries TensorFlow Theano CNTK

CPU GPU

Keras

User code

Interface

Backend ...



Group unique inconsistency

● A group of inconsistencies with the same inconsistency 
pattern between the same pair of implementations
○ Inconsistency pattern is the distribution of metric distance
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Suggested settings

● Grid search on TC, TM, and p values
● Optimal settings (most inconsistency without false 

negative and false positive) are:
○ CLASS-based: TC = 8 and p = 0%
○ MAD-based: TM = 0.2 and p = 0%

● Confirm using cross-validation
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Dataset and hardware

● Dataset:
○ 11 datasets including ImageNet, MNIST, Udachi Driving 

Challenge 2, etc. 
○ 30 pre-trained models

● Hardware:
○ Xeon E5-2695
○ NVIDIA Titan Xp
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Detected inconsistencies

The numbers outside and (inside) brackets are the unique and (total) number of inconsistencies respectively.
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Comparison to accuracy

● Detect inconsistency if the top-k accuracy difference is 
above a threshold TAC

● We pick k between 1 to 5 and TAC between 0 and 50
● With TAC = 0, top-1 accuracy detects the most 

inconsistencies (305) but still missed 35
○ E.g., for the Dog species model, the Batch_normalization 

bugs induce inconsistency between TensorFlow and CNTK
○ However, those backends got identical top-1 (29.9%) and top-5 

(64.4%) accuracies
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Future work

● Detect inconsistencies and bugs in training code
○ Harder since training is non-deterministic

● Generate mutated models using fuzzing to expand testing 
set

● Testing with only one backend with equivalent models

30


