
CRADLE: Cross-Backend Validation to Detect
and Localize Bugs in Deep Learning Libraries

1University of Waterloo, Canada
2University of Science and Technology of China, China

3Purdue University, USA

Lin Tan3Thibaud Lutellier1 Weizhen Qi2Hung Viet Pham1

Deep learning (DL) is pervasive

Machine translation Alzheimer’s disease diagnosis

Autonomous driving cars Virtual assistance
2

DL system

Correct DL systems require correct implementations

3

Algorithms / Models Implementations

CRADLECRADLE

DL libraries are hard to test and debug

● Intrinsic complexity
● DL system expected output is

unknown
○ Correct programs should output

expected output.
○ The ground truth is not the expected

output because models are not perfect.

4

MobileNetV2 - TensorFlow: banana
Ground-truth: banana

MobileNetV2
Expected output: tennis ball

Idea: Differential testing

InceptionResNetV2 Model

An inconsistency

A “petri-dish” image

TensorFlow classification
TensorFlow backend

InceptionResNetV2TensorFlow

InceptionResNetV2CNTK

CNTK backend

CNTK classification

5

● The CNTK batch normalization formula was implemented
incorrectly.

● The developers fixed the bug after we reported it.

Batch_normalization bug

6

- return(x-mean)/(C.sqrt(var)+epsilon)*gamma+beta
+ return(x-mean)/ C.sqrt(var +epsilon)*gamma+beta

Differential testing: Challenges

● How to compare two implementations?
○ What metric to use?
○ What should be considered bugs?

● How to localize the faults?
○ How to find faults in the complex model executions?

7

Differential testing: Ideas

● Two metrics measure the severity of the inconsistency for
a set of input instances.

● Localization map compares intermediate states of DL
models for fault localization.

8

CRADLE: Overview

9

Localization phase

Detection phase

Output
extractor

Crash bugs

Model output Unique
inconsistencies

Trained models
&

 Validation data

Hidden states
extractorHidden statesInconsistency

localizer
Localization

maps

Output
comparator

Inconsistency
bugs

CRADLE: Detection phase

10

Localization phase

Detection phase

Output
extractor

Crash bugs

Model output Unique
inconsistencies

Trained models
&

 Validation data

Hidden states
extractorHidden statesInconsistency

localizer
Localization

maps

Output
comparator

Inconsistency
bugs

Output extractor

11

● Executes the models on different backends to obtain output
● Detects crashes

InceptionResNetV2 Model
An “petri-dish” image

InceptionResNetV2CNTK

CNTK backend

CNTK classification

MAD-based (Regression)CLASS-based (Classification)

Output comparator: Distance metrics

12

Metrics calculate difference relatively to the ground-truth.

σpetri-dish,TF = 25-1 = 16

CLASS-based distance example

13

TensorFlow CNTK

σpetri-dish,CN = 0

|σpetri-dish,CN - σpetri-dish,CN| = 16

Rankpetri-dish,TF = 1 Rankpetri-dish,CN > 5

Top-5 classification

Inconsistency triggering input (ITI)
● An input instance triggers a distance larger than a

threshold (TC and TM)
○ E.g.,: “petri-dish” image is an ITI given TC = 8.

14

Theano: Indian elephant
TensorFlow: groom

CNTK: groom

TensorFlow: banana
CNTK: tennis ball

Theano: tennis ball

CNTK: Arabian camel
TensorFlow: hen

Theano: hen

Detect inconsistency

● An inconsistency is a pair of implementations that triggers
more than p% of ITIs over the validation set

15

InceptionResNetV2TensorFlow

InceptionResNetV2CNTK

16

6

0

Validation set

TC = 8

D_CLASS

p = 10%

CRADLE: Localization phase

16

Localization phase

Detection phase

Output
extractor

Crash bugs

Model output Unique
inconsistencies

Trained models
&

 Validation data

Hidden states
extractorHidden statesInconsistency

localizer
Localization

maps

Output
comparator

Inconsistency
bugs

Hidden state extractor

● The “most inconsistent” input per inconsistency is used.
● The network structure + hidden states are considered as

the network execution graph.
● Hidden states are output of hidden layers.

17

BatchNormConv2D GloAvgPool

776
layers
omitted

Activation

Dense

TensorFlow: jean

Input: jean Conv2D BatchNorm Activation GloAvgPool

InceptionResNetV2 execution graph on TensorFlow

MAD differences

18

BatchNormConv2D GloAvgPool

776
layers
omitted

Activation

Dense

TensorFlow: jean

Conv2D BatchNorm Activation GloAvgPool

BatchNormConv2D GloAvgPool

776
layers
omitted

Activation

Dense

CNTK: mail bag

Conv2D BatchNorm Activation GloAvgPool

Input: jean

BatchNorm
𝛿 = 0.0002

Conv2D
𝛿 = 0.0

GloAvgPool
𝛿 = 0.0860

Activation
𝛿 = 0.1480

776
layers
omitted

Dense
𝛿 = 0.0004

Inconsistency introduction rate

● Calculate the rate of change
○ ∊ prevent division by zero

● Highlight executions with R
above the third quantile

InceptionResNetV2 localization map between TensorFlow and CNTK
19

BatchNorm
𝛿 = 0.0002
R = 2048.6

Conv2D
𝛿 = 0.0
R = 0.0

Activation
𝛿 < 0.0001
R =-0.5497

Conv2D
𝛿 = 0.0003
R = 2.3009

GloAvgPool
𝛿 = 0.0860
R =-0.4191

772
layers
omitted

Activation
𝛿 = 0.1480
R =-0.5173

Dense
𝛿 = 0.0004
R =-0.9950

TensorFlow: jean
CNTK: mailbag

Input: jean

Conv2D
𝛿 = 0.0138
R = 0.5530

BatchNorm
𝛿 = 0.3067
R = 21.186

20

104 unique inconsistencies

3 backends

28 models 11 datasets

7 inconsistency bugs 5 crash bugs

Result

fx

21

7 inconsistency bugs

Batch normalization BatchNormalization

Padding scheme Conv2D variant

Pooling scheme AveragePooling2D

Parameter organization Trainable Conv

RelevantOne ofFirst

22

Localization is helpful

Relevant to the causes of all 104 unique inconsistencies

Conclusion

● CRADLE applies differential testing on DL implementations
and localize faulty functions by tracking error propagation.
○ Detects 7 confirmed inconsistency bugs and 5 crash bugs
○ Helps find root causes of all 104 unique inconsistencies using

localization maps
● Inconsistencies are common and widespread.
● We call for more attention to testing of DL libraries.

23

DL system overview

24

High-level
Libraries

Hardware

Low-level
Libraries TensorFlow Theano CNTK

CPU GPU

Keras

User code

Interface

Backend ...

Group unique inconsistency

● A group of inconsistencies with the same inconsistency
pattern between the same pair of implementations
○ Inconsistency pattern is the distribution of metric distance

25

Suggested settings

● Grid search on TC, TM, and p values
● Optimal settings (most inconsistency without false

negative and false positive) are:
○ CLASS-based: TC = 8 and p = 0%
○ MAD-based: TM = 0.2 and p = 0%

● Confirm using cross-validation

26

Dataset and hardware

● Dataset:
○ 11 datasets including ImageNet, MNIST, Udachi Driving

Challenge 2, etc.
○ 30 pre-trained models

● Hardware:
○ Xeon E5-2695
○ NVIDIA Titan Xp

27

Detected inconsistencies

The numbers outside and (inside) brackets are the unique and (total) number of inconsistencies respectively.
28

Comparison to accuracy

● Detect inconsistency if the top-k accuracy difference is
above a threshold TAC

● We pick k between 1 to 5 and TAC between 0 and 50
● With TAC = 0, top-1 accuracy detects the most

inconsistencies (305) but still missed 35
○ E.g., for the Dog species model, the Batch_normalization

bugs induce inconsistency between TensorFlow and CNTK
○ However, those backends got identical top-1 (29.9%) and top-5

(64.4%) accuracies

29

Future work

● Detect inconsistencies and bugs in training code
○ Harder since training is non-deterministic

● Generate mutated models using fuzzing to expand testing
set

● Testing with only one backend with equivalent models

30

