Improving Quality of Clone Detection with Conceptual Similarity of
Source Code

Hung Viet Pham'!, Phong Minh Vu?, Tam The Nguyen?, Tung Thanh Nguyen?
1Utah State University, 2Auburn University
hung.pham@aggiemail.usu.edu, phong@auburn.edu, tam@auburn.edu, tung@auburn.edu

Abstract

Code clones are highly similar code fragments which
are highly desirable candidates for refactoring or as-
pect mining. However, popular clone detection tech-
niques sometimes report clone candidates of low qual-
ity. This paper introduces CoF1i, a filtering technique to
remove them. CoFi has three major steps: i) learning
to represent technical terms in source code as vectors,
ii) measuring the conceptual similarity of clone candi-
dates based on those vectors, and iii) filtering out clone
candidates having low conceptual similarity. Prelimi-
nary evaluation suggests that CoFi can improve detec-
tion results of popular clone detection tool. It removed
83.3% of low quality clone pairs and retains 98.6% high
quality pairs from the detection result of JSync, a tree-
based detection tool. For DLCD, a deep learning-based
detection tool, it removed 54% and retained 96.8%.

Introduction

In a large software system, an algorithm, a technical
concern, a programming idiom, a business rule, or a
design pattern is usually realized or implemented at sev-
eral places. This typically results in highly similar code
fragments. Because software programmers often use the
“copy-and-paste” practice (“cloning”) to quickly pro-
duce similar code fragments, such code is often called
code clones in software engineering literature.

Code clones are useful for many software engineering
tasks. For example, code clones often have the same or
similar programming errors. Thus, bug fixing will be
more effective and complete if all clones of the buggy
code are detected and fixed similarly. Code clones are
good candidates for refactoring or mining cross-cutting
concerns for aspect-oriented programming. They are
also helpful for program comprehension, as they could
imply the high level design of the systems.

Let us elaborate the usefulness of code clone detection
via an example in ArgoUML. ArgoUML (8) is a mod-
eling tool for Unified Modeling Language (UML) devel-
oped in Java. Users can use ArgoUML to draw UML
diagrams while designing a software system. In UML,
classifier represents the abstract concept of metaclass,

Copyright (© 2015, Association for the Advancement of Ar-
tificial Intelligence (www.aaai.org). All rights reserved.

Table 1: Method signatures of two similar classes

UMLAttributesListModel UMLOperationsListModel

resetCache() resetCache()
isProperClass(Object obj) isProperClass(Object obj)
getRawCollection()
getCache()
add(int index)
delete(int index)
moveUp(int index)

getRawCollection()
getCache()
add(int index)
delete(int index)
moveUp(int index)

moveDown(int index) moveDown(int index)

which generalizes classes, interfaces, data types, etc. A
classifier has a list of attributes (e.g., fields or data
members of a class) and another list of operations (e.g.,
methods or function members of a class).

Analyzing the source code of ArgoUML, we found
that two classes UMLAttributesListModel and UMLOpera-
tionsListModel are respectively responsible for storing the
lists of attributes and operations for a UML classifier.
As attribute and operation are two abstract and related
concepts for UML classifiers, it is no surprise that those
two classes have very similar design and implementation
code. For example, they both inherit from the same
parent class UMLModelElementCachedListModel, and thus,
inheriting the same fields and methods from that class.
Table 1 lists the signatures of methods implemented in
those two classes side-by-side. As seen from the table,
those two classes often have methods with the same
signatures. We observed that those methods also have
very similar implementation code. Two pairs among
them are listed in Figure 1.

Further investigation suggests that two classes UM-
LAttributesListModel and UMLOperationsListModel are re-
sulted from the realization of the Model- View-Control
design pattern for two similar and related concepts
UML attribute and operation. Methods getCache imple-
ment the same programming idioms of caching and lazy
inatialization. Methods add implement the same algo-
rithm for adding a new element to a cached collection.
They both invoke the Singleton design pattern.

Those classes and methods could be considered as

protected java.util.List getCache() {
if(-attributes == null) {
_attributes = buildCache();

}

return _attributes;

}

protected java.util.List getCache() {

if(_operations == null) {
_operations = buildCache();

}

return _operations;

}

public void add(int index){

Object target = getTarget();

if(target instanceof MClassifier) {
MClassifier classifier = (MClassifier) target;
Collection oldFeatures = classifier.getFeatures();
MAttribute newAttr = MMUtil.SINGLETON.buildAttribute(classifier);
classifier.setFeatures(addElement(oldFeatures,index,newAttr,

_attributes.isEmpty()?null:_attributes.get(index)));

fireContentsChanged(this,index—1,index);
navigateTo(newAttr);

public void add(int index){
Object target = getTarget();
if(target instanceof MClassifier) {
MClassifier classifier = (MClassifier) target;
Collection oldFeatures = classifier.getFeatures();
MOperation newOp = MMULil.SINGLETON.buildOperation(classifier);
classifier.setFeatures(addElement(oldFeatures,index,newOp,
_operations.isEmpty()?null: _operations.get(index)));
fireContentsChanged(this,index—1,index);
navigateTo(newOp);
}
}

Figure 1: Similar methods in classes UMLAttributesListModel (left) and UMLOperationsListModel (right)

public DocletParam createParam() {
DocletParam param = new DocletParam();
params.addElement(param);
return param;

}

protected ArchiveScanner newArchiveScanner() {
ZipScanner zs = new ZipScanner();
zs.setEncoding(encoding);
return zs;

}

Figure 2: Unrelated methods with the same token-based and tree-based representation

high quality code clones. Due to their high lexical and
structural similarity, token-based (1) and tree-based (3;
2) clone detection tools can detect them easily. How-
ever, because those tools only use the similarity of code
token sequences, parse-trees, or abstract syntax trees to
detect code clones, they occasionally report clone can-
didates of low quality, which are accidentally similar in
token sequences or tree structures but do not relate in
design or implementation.

Figure 2 illustrates an example of such low qual-
ity detected clone candidates in Ant (7). Two
methods createParam and newArchiveScanner have the
same token sequences and abstract syntax trees, thus
are reported as code clones by two popular tools
CCFinder and Deckard. However, two classes Doclet-
Param and ArchiveScanner are not similar or related:
one represents doclet parameters of a Javadoc ob-
ject, while the other implements functions for read-
ing the content of compressed files. Two method calls
params.addElement(param) and zs.setEncoding(encoding)
perform two different tasks: one adds a newly created
parameter to a parameter list, while the other sets the
encoding of a scanner for .zip archive files. Thus, they
could be considered as low quality detection results.

Comparing the two examples, we can see that code
fragments in Figure 2 do not involve the same or simi-
lar software concepts, while ones in Figure 1 involve two
related UML concepts attribute and operation and the
same concepts of list, caching, lazy initialization, Model-
View-Controller, Singleton, etc. This suggests that, in

addition to being similarity in lexical and grammati-
cal structures, high quality code clones also involve the
same or similar software concepts. Thus, to detect high
quality clones, we should measure conceptual similarity
of code clone candidates and use such measurement to
filter out low quality ones.

Approach

In this paper, we introduce CoFi (Conceptual
Similarity-based Code Clone Filter), an approach to
improve the quality of clone detection by measuring
conceptual similarity of clone candidates and filter out
ones having low conceptual similarity. CoFi does that
by learning vector-based representation of technical
terms and computing conceptual similarity of code frag-
ments based on similarity of vectors of the technical
terms appearing in those code fragments.

Technical Terms

We design CoFi based on the assumption of descriptive
naming scheme in software development. That is, soft-
ware engineers would name code elements like classes,
methods, fields, constants, parameters, and variables
using terms indicating the software concepts realized by
those elements. For example, the name UMLAttributes-
ListModel of a class suggests it represents the data model
for storing lists of UML attributes.

CoFi considers any word or a specific token appearing
in identifiers of code elements of a software system as
a technical term. To extract them from source code, it

tokenizes identifiers into lowercased tokens based on the
Java naming convention. For example, UMLAttributes-
ListModel is tokenized into uml, attributes, list, and model.
A term could be a non-English token like uml, http,
win32, or sha256.

Unlike typical information retrieval systems, CoFi
does not stem or lemmatize the resulted terms after
tokenizing. This is based on the assumption that tech-
nical terms having the same root might not express re-
lated software concepts. For example, the term oper-
ation might refers to the concept of operation in the
UML language (e.g., a method or a function of a class),
while the term operating in operating system does not
have that meaning.

Context

CoFi defines the context of a term in a given code el-
ement /fragment as the collection of terms surrounding
it. For each term extracted from an identifier, CoFi
considers all other terms appearing in that identifier
and in nearby identifiers as its context. For example,
the context of term attributes in the identifier UMLAt-
tributesListModel consists of uml, list, and model.

The context is important in CoFi and other text ana-
lytics techniques because terms appearing frequently in
similar contexts would have similar roles (syntactical)
or meanings (semantics). For example, two identifiers
UMLAttributesListModel and UMLOperationsListModel pro-
vide the same context for two terms attributes and oper-
ations. As we have discussed previously, attributes and
operations are actually two similar and related concepts
in the UML modeling language and thus, in ArgoUML.

Vector-based representation

Traditional language modeling and text analytics tech-
niques consider terms as atomic elements. For example,
in Vector Space Model, a document is represented as a
high dimensional vector in which each term represents
an individual, separate dimension. However, terms
are often related (e.g., synonyms). Treating terms as
atomic elements cannot capture those relationships.

To address that problem, state-of-the-art word em-
bedding approaches like Glove (4) and word2vec (5)
model a term not as an atomic element but as a more
complex entity represented by a high dimensional vec-
tor. Vectors of term are learned (i.e. estimated) from
a large text corpus to capture the relationships be-
tween the corresponding terms. For example, the se-
mantic similarity of terms could be estimated by the
(dis)similarity of their representation vectors.

GloVe (4) has been proved to be the most effective
technique in detecting similar words in natural lan-
guages. Thus, we adapt it to learn vectors of technical
terms in source code. The learning procedure of CoFi
has the following steps:

Step 1: Pre-training. We need a very large corpus
of text to reliably train vectors for words in natural
languages. However, the amount of textual content ex-
tracted from identifiers of code elements is insufficient.

Therefore, we download vectors pre-trained for English
words provided by Glove team and use them as initial
values for the training process.

Step 2: FEuxtracting terms. The training procedure of
Glove requires a term co-occurrence matrix ¢. For two
terms x and y, @, is the number of times y appearing
in a context of x. Thus, CoFi analyzes all source files
of the software system, extracts terms and their con-
texts as defined in previous sections and produce the
co-occurrence matrix.

Step 3: Estimating vectors. CoFi loads pre-trained
vectors for terms extracted in step 2 and uses Glove to
re-train them using the co-occurrence matrix produced
in Step 2. Terms without pre-trained vectors (e.g., non-
English tokens) have their vectors randomly initialized.

In general, GloVe’s training algorithm estimates for
each term = a vector v, satisfying the constraint:

Vg - Vy R 1og Yzy VT, Y @zy >0

In other words, those vectors can be used to re-
construct the co-occurrence matrix which represents the
relationships between terms. The details of this train-
ing algorithm are discussed in (4).

Conceptual similarity of terms

After training, CoFi produces for each term x a vector
w;. For two terms z and y, if they are similar, they
often appear in the same contexts and thus having sim-
ilar co-occurrences with terms in those contexts. That
means, @z, ~ ¢y, for all z. Supplying this to the train-
ing constraint, we have v -v, = vy-v, for all z, implying
that v, ~ vy, i.e, x and y have similar vectors. Because
cosine could be used to measure vector similarity, we
define the conceptual similarity of x and y as

1+ cos(vg, vy))

sim(z,y) = 5

Because cos(vy, vy) is in [-1,1], this formula ensures that
sim(z,y) is in [0,1].

Conceptual similarity of code fragments

CoFi measures conceptual similarity of two code frag-
ments X and Y as the following. First, it extracts tech-
nical terms from X and Y. Then, it aligns those terms
to maximize the total similarity of aligned terms:

Txy = arg max Z sim(z, y)
(z,y)eM

The conceptual similarity of X and Y is computed as:

. 2Txy
sim(X,Y) = —————
XY =N N
In these formulas, M is an alignment for each term
z in X to at most a term y in Y, while Nx and Ny

are the numbers of terms in X and Y, respectively. It
is easy to see that sim(X,Y) is in [0,1].

Preliminary Evaluation

We conducted a preliminary evaluation of CoFi for two
state-of-the-art clone detection techniques. First, we
used it to filter the detection result of JSync (3), a tree-
based clone detection tool. CoFi filtered out 83.3% of
low quality clones and retained 98.6% of high quality
ones. Next, we used CoFi to filter the detection result
of DLCD (6), a clone detection technique based on deep
learning. It filtered out 54% of low quality clones and
retained 96.8% of high quality ones.

For tree-based clone detection

JSync is the state-of-the-art tree-based clone detection
and management tool developed by Nguyen et al. (3).
JSync produces for each code fragment a vector count-
ing the structural features extracted from its AST sub-
tree. Two code fragments are reported as code clones
if the structural similarity of their vectors exceeds a
pre-defined threshold (of 0.9 in our experiment).

We ran JSync on a repository of ten subject systems
and examined a sample of 326 pairs from its detection
result. We manually labeled each clone pair as of high
or low quality. Among 326 sampled clone pairs, 284
were labeled high quality and 42 were low quality. Two
functions are considered as a high quality clone pair if:

e They implement the same algorithm or programming
idiom (at least 75% of their steps are similar). Two
steps are considered similar if they involve similar
function calls or statements.

e They operate on similar data types. Two types are
considered similar if they realize or implement the
same or similar concepts that are closely related to
functionality of the two methods under examination,
e.g., StringBuffer and StringBuider for string operations.

e They involve similar or related functions/operations
For example, add and remove something from a list
are considered list operations, read and write are con-
sidered I/O operations, etc.

e They could be refactored to a generalized function
with reasonable effort, i.e., be refactored easily using
a common generalized function whose size is smaller
than the total size of two initial methods.

Then, we ran CoFi on the sampled clone pairs. Ones
with conceptual similarity less than 0.75 are considered
as low quality and removed. We found that 35 low
quality and 4 high quality pairs were filtered out. That
means, CoFi removed 35/42 = 83.3% of low quality
pairs and retained 280/284 = 98.6% high quality ones.

For deep learning-based clone detection

DLCD is the state-of-the-art deep learning-based clone
detection technique developed by White et al. (6). To
detect code clones, it employs a recurrent neural net-
work (a type of deep learning infrastructures) to learn
for each code fragment a vector representing its term
sequence and a recursive neural network (another type

of deep learning infrastructures) to learn another vec-
tor for its AST sub-tree. Code fragments with similar
vectors are reported as code clones.

Because DLCD’s implementation code is unavailable,
we conducted our experiment with CoFi on the detec-
tion result provided by its authors. We obtained from
their project website a dataset consisting 406 method-
level clone pairs detected by DLCD on eight subject
systems and labeled manually by its authors. They la-
beled 371 pairs as "true positive” and 35 as “false pos-
itive”. To be objective, we considered their true and
fault positive labels as the high and low quality labels,
respectively, in our labeling procedure.

We ran CoFi on those eight subject systems. After
learning vectors for their terms, it computed the con-
ceptual similarity of 406 clone pairs in this dataset and
filtered out ones less than 0.75. 19 false positive and 12
true positive pairs were filtered. That means, CoFi re-
moved 19/35 = 54% false positive and retained 359/371
= 96.8% true positive clone pairs.

Running time
CoF1i has two main steps: 1) extracting terms and count-
ing their co-occurrences from source code and ii) learn-
ing vectors for those terms. We measured its running
time on a workstation with i7 3770 CPU and 16 GB
RAM. On average, it took 12 seconds for extracting
terms and 69 seconds for learning vectors. On JDK, the
largest subject system with more than 54,000 methods,
it took 74 seconds for extracting 16,000+ terms and 155
seconds for learning their 300-dimensional vectors.
The result suggests that CoFi’s runtime is reason-
able and thus, it can be used efficiently in practice for
interactive software development.

References

T. Kamiya, S. Kusumoto, and K. Inoue: CCFinder: A
multi-linguistic token-based code clone detection system
for large scale source code. TSE, 2002.

L. Jiang, G. Misherghi, Z. Su, and S. Glondu.
Deckard: Scalable and accurate tree-based detection of
code clones. In ICSE, 2007.

H. A. Nguyen, T. T. Nguyen, N. H. Pham, J. Al-Kofahi,
and T. N. Nguyen: Clone management for evolving soft-
ware. TSE 2012.

J. Pennington, R. Socher, and C. Manning: GloVe:
Global wvectors for word representation. In EMNLP,
2014.

T. Mikolov, K. Chen, G. Corrado, and J. Dean: Effi-
cient estimation of word representations in vector space.
CoRR, 2013.

M. White, M. Tufano, C. Vendome, and D. Poshyvanyk:
Deep learning code fragments for code clone detection.
In ASE 2016.

Ant: http://ant.apache.org/

ArgoUML: http://argouml.tigris.org

