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Discriminative Prediction of Enhancers with
Word Combinations as Features

Pham Viet Hung and Tu Minh Phuong

Abstract. Identification of enhancer regions is important for understanding the
regulation mechanism of gene expression. Recent studies show that it is possible
to predict enhancers using discriminative classifiers with generic sequence features
such as k-mers or words. The accuracy of such discriminative prediction largely
depends on the ability of the models to capture not only the presence of predictive
k-mers (words), but also spatial constraints on clusters of such k-mers. In this paper,
we propose a method that first selects the most important word features and then use
combinations of such words, which satisfy certain spatial constraints, as additional
features. Experiments with real data sets show that the proposed method compares
favorably with a state-of-the-art enhancer prediction method in terms of prediction
accuracy.

Keywords: Enhancer prediction, SVM, feature extraction, TFBS combination.

1 Introduction

The regulation of gene expression plays a fundamental role in cell differentiation and
responses of cells to various conditions. There are several levels, at which the expres-
sion of genes is regulated, the most important of which is transcriptional regulation.
At the transcriptional level, the expression of genes is regulated by transcriptional
factors (TFs) that recognize and bind to short DNA sequence motifs, known as tran-
scription factor binding sites (TFBSs). To provide stronger signals for TFs, TFBSs
often occur near each other in DNA regions, which are called cis-regulatory mod-
ules (CRM). CRMs that enhance the expression of genes from distance are called
enhancers. Identification of enhancers is important for understanding the mecha-
nisms of gene expression regulation.
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With the current technologies, laboratory methods for enhancer identification are
available. Usually, this consists of two steps. First, chromatin immunoprecipitation
(ChIP) technique is used to detect signatures of specific TFs associated with activi-
ties of enhancers. Then, microarray hybridization or massive parallel sequencing is
used to decode the enhancers involved in these activities [14]. This approach allows
recognition of enhancers with high accuracy but is resource-intensive, thus limiting
its use in practice. A faster and more cost-effective approach is to use computational
techniques for predicting enhancers [15], which is the focus of this paper. Methods
of this type take advantage of the availability of sequence and other genomic data to
recognize enhancers.

A large group of enhancer prediction methods rely on analysis of sequence data.
Methods of this group mainly use two strategies. The first strategy is to use prede-
termined TFBSs, for example from TFBS databases or by running a motif finding
algorithm, and search for clusters of these TFBSs [1]. These methods depend on
the availability of known TFs and their motifs. The second strategy is discrimina-
tive, i.e. using classification algorithms with confirmed enhancers as training data
to differentiate between enhancers of a specific type and non-enhancers [12, 7].

Sequence-based enhancer prediction approaches rely on the assumption that sim-
ilar sequence content is associated with similar binding events, which are in turn
associated with similar gene expression. It is well known that TF binding is
sequence-specific, i.e. each TF recognizes and binds to a specific short DNA motif
(TFBS) of length up to 10 base-pairs (bp). It is also observed that the presence of
a motif is not a guarantee for binding and a large fraction of motifs are false posi-
tives, i.e. are not associated with binding events. For binding events to occur, TFBSs
usually cluster together in enhancers to provide stronger signals for TFs. Previous
studies show that there are certain constraints on motif types, motif numbers, and
relative motif location within those clusters [5, 14]. For example, pair or triple of
TFs of certain types have been observed to bind to closely located TFBSs to co-
regulate the expression of some genes [18]. Thus, to successfully predict enhancers,
classifier-based methods should be able to model such constraints.

In this paper, we follow the classification-based approach and use SVM classi-
fiers to discriminate between enhancer and non-enhancer sequences. Our method
is similar to one presented in [12, 7, 16], which also use SVM for this problem.
The difference is that we introduce a new type of features that explicitly count for
the constraints on types, distance and order of combinations of words (k-mers). To
make counting of word combinations tractable, we use feature selection to reduce
the set of words to consider. We develop an algorithm to count the number of word
combinations that satisfy certain spatial constraints on the locations of words. In
this paper, only word pairs are considered but experiments show that this leads to
improvement in prediction accuracy in many cases. In experiments using several
enhancer datasets from three species (human, mouse, and Caenorhabditis elegans),
our method compares favorably with a state-of-the art enhancer prediction method.
An analysis of k-mer pairs extracted from the models learned by the method also
provides interesting patterns of TFBS clusters from experimented datasets. Impor-
tantly, this is achieved without significant increase in computational complexity.
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1.1 Related Work

A significant number of computational methods for CRM prediction, in general,
and enhancer prediction, in particular, have been developed. Some methods rely on
the assumption that CRMs, as a functional regions, are more conserved between
related species than background, non-functional regions. These methods search for
conserved regions as putative CRMs by combining phylogenetic footprinting with
sequence information [11]. For certain types of CRMs, this conservation-based ap-
proach can make predictions with high accuracy. However, it is known that many
CRMs that are not highly conserved, for which this approach produces poor predic-
tions [15].

Another group of methods rely on signals contained in genomic sequences to
make predictions. Early methods of this group search for clusters of known TFBSs
within a sequence window [1]. Other methods construct probabilistic models of
CRMs, for example in forms of HMMs, and search for regions that fit the learned
models with high probabilities. Window clustering require databases of confirmed
TFBSs while probabilistic methods require only positive examples or no examples
at all but tend to produce many spurious predictions.

Recently, a new, discriminative approach has been developed. Methods of this
approach take as input both positive (CRM sequences) and negative examples (se-
quences that are believed to be not CRMs) and build a classification model to dis-
criminate positive sequences from negative ones. Several studies have shown the
ability of discriminative methods in predicting enhancers of complex organisms
such as mammals, which is challenging for other approaches [7, 9, 4, 12]. Besides
the availability of training data, the success of classification-based approach de-
pends, to a large degree, on the selection of appropriate features to represent se-
quences, or, more generally, on the selection of appropriate similarity measures [4]
and kernels [12] between sequences. While some methods of this group use con-
firmed motifs as features [12], thus depends on the availability of TFBS databases,
other methods extract features from input sequences, making them easier to use in
practice [7, 4, 16]. Our proposed method is similar to [7, 4, 16] in that it uses generic
sequence features. However, we introduce additional features by explicitly counting
the numbers of word combinations. In this way, our approach is able to incorporate
different constraints on the presence of motifs within enhancers.

2 Preliminaries

In this work, we follow the discriminative approach to predict enhancers. Specif-
ically, we train Support Vector Machines (SVMs) classifiers to differentiate be-
tween enhancer (positive) and non-enhancer (negative) sequences. SVMs have been
the technique of choice in many enhancer prediction methods due to their su-
perior accuracy and flexibility in dealing with different types of biological data
such as sequences and interaction networks. The success of SVMs classifiers de-
pends, to a large extent, on choosing appropriate features or kernels. In this section,
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we review popular features for sequence data, which serve as basis for our new types
of features.

The Spectrum and Mismatch Kernels. In general, when classifying biological
sequences with SVMs, one needs to measure the similarity between each pair of
sequences and use it as kernel. This process normally involves alignment mecha-
nism of some kind, which makes the similarity computation expensive. Leslie et
al [8] proposed a simple type of features and respective kernel for sequences that
is alignment-free: the spectrum kernel. A sequence s of length l with alphabet α
(α = {A,C,T,G} for DNA sequences) is scanned and the numbers of occurrences
of words of length k, or k-mers is used to build a feature vector for s (in this paper,
"word" and "k-mer" are interchangeable). For DNA sequences, this method creates
a feature vector with 4k elements corresponding to 4k distinct k-mers. The inner
product of two such feature vectors is calculated as the spectrum kernel function
of corresponding sequences. This kernel is alignment-free since the similarity of
two sequences could be computed without using any alignment, hence making such
kernel computational efficient.

The spectrum kernel can be extended to incorporate partial matches of k-mers,
which is important in comparison of sequences with less conserved motifs. Such
variation of the spectrum kernel is known as mismatch kernel. A (k,m) mismatch
kernel considers two k-mers the same if they have no more than m mismatches.

The spectrum and mismatch kernels are simple to calculate and have been shown
to deliver satisfactory results in certain cases [7]. Both types of kernels measure the
similarity based on the co-occurrences of k-mers in a pair of sequences independent
of k-mers’ positions. However, it is well known that, in many cases, for binding
events to occur certain constrains on the locations, and orders of motifs (TFBS)
should be met. For example, some enhancers consist of pairs or triples of instances
of the same or different motifs that are located near each other (within tens of bp),
and the spectrum and mismatch kernel may not work well in these situations. To
model such constrains, we present novel kernels that explicitly take into account the
relative locations of k-mers.

3 Word Combination Features

In this section, we introduce a new type of features and kernel that explicitly incor-
porate location and order constrains on occurrences of k-mers or words, which we
call word combination feature(WCF). Basically, the values of such features are the
numbers of times each pair of k-mers co-occurs within a sequence and also satisfies
certain location constrains. For example, a possible feature is the number of times
k-mer A co-occurs with k-mer B and the distance between the two instances are less
than a predefined threshold. There are two main obstacles in using such features.
First, the number of k-mer pairs is very large, resulting in very high-dimensional
feature space. With k = 6, for example, there are thousands of possible k-mers and
millions of their pairs. Second, calculating such features may be time-consuming
and thus requires the development of efficient algorithms.
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In what follows, we describe solutions for these two problems. Specifically, to
reduce the number of k-mer pair features, we select a small set of important k-
mers and compute pair features only for k-mer from this set. Then, we introduce an
algorithm that calculate such features with complexity linear to the sequence length.

3.1 Selection of Important K-mers

Although there are 4k possible k-mers, only a small number of them are important
in the sense that they are predictive of an enhancer. By focusing only on these im-
portant features, we can reduce the number of k-mer pairs to a manageable size. In
this work, we use two methods to select important k-mers based on feature selection
ability of linear SVMs and AdaBoost [3].

Selecting Important k-mers with SVMs. A linear SVM uses a linear score func-
tion of the form f (x) = ∑N

i=0 wixi to calculate a score, which is then thresholded to
decide the class label. In this function, xi is i-th feature and wi is its weight learned
from training data. The larger the absolute value of wi, the higher contribution of
i-th feature to the score function, and thus the more important it is. Our selection
method works as follows. First, we train a SVM using the spectrum kernel, i.e. with
all k-mers. Once the SVM has been trained, we sort k-mers based on their weights,
and then use three strategies to select most important ones: 1) select k-mers with
top positive weights (SVM+), 2) k-mers with top negative weights (SVM−), and
3) combined list of k-mers with top positive and negative weights (SVM+−). Here,
"top negative weights" mean negative weights with highest absolute values.

Selecting Important k-mers with AdaBoost. AdaBoost [3] is a special case of
boosting algorithms. In general, boosting works by combining many weak classi-
fiers (each has a slightly better prediction accuracy than choosing at random) to
produce a strong classifier. Each of these weak classifiers could be as simple as a
decision stump model. The method of learning is an iterative process of growing
an ensemble of weak classifiers, each time adding one more. AdaBoost is adaptive
since subsequent classifier added are selected to focus on examples mis-classified
by previous classifiers.

In this work, we use AdaBoost with decision stumps as weak classifiers. A deci-
sion stump ds(i,θ) is an one-level decision tree, which has the form "class = positive
if i ≥ θ; and class = negative otherwise". In each iteration, AdaBoost selects i and
θ so that the most number of training samples are classified correctly. Therefore,
the algorithm tends to select most predictive features in early iterations, and mul-
tiple times. We use this property to select predictive k-mers as follows. We train
AdaBoost on the training data using all k-mers as features. Each time a k-mer is se-
lected in a decision stump, it is added into the set of important k-mers. This process
ends when a desired number of distinct k-mers has been selected.
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3.2 Calculating Combination Features

Now, we describe an efficient algorithm to extract features that are combinations of
important k-mers selected in the previous step. Recall that we use features that are
numbers of times pairs of important k-mers or two instances of a same k-mer occur
within a predefined distance d. When counting these features, we do not consider
order of words, and we do not differentiate between a word and its reverse comple-
ment. In other words, pairs of k-mers A and B with A appear before B or B before
A or pair of A and reverse complement of B will all be counted as one feature.

To count the number of such pairs, first we map each important k-mer and its
reverse complement to an unique index. For example, 100 k-mers will be assigned
indexes from 1 to 100 while their reverse complements will be assigned indexes
from -1 to -100. This step produces a k-mers dictionary called k_mers_dict that
allows our algorithm to compress the DNA sequence to an array of indexes so that
comparison will be faster.

The second preprocessing step produces another dictionary allowing the feature
extraction step to accurately detect each feature. In this step, we determine the set of
index pairs by calculating all possible pair combinations of k-mers indexes. Then,
combinations corresponding to the same feature are then bagged to form the features
mapping.

This second step produces a feature index dictionary called feat_index_dict that
mapping pairs of k-mer indexes to feature indexes. Each genomic sequence is then
processed to extract features by using the algorithm presented in Algorithm 1.

In the worse case scenario we will have to analyze at most (L−k)∗(D+k) k-mers
indexes with L being the length of DNA sequence and D is the maximum distance
of k-mers pair.

Combining Features. Once combination features are calculated, we remove fea-
tures that does not appear in any training sample. The remaining features are then
normalized to sum to one and the resulting feature vector is concatenated to spec-
trum kernel’s feature vector to form a new feature vector. Note that, the two set of
features are normalized separately. We then normalize again after combining these
features so they contribute equally to the result. For any two sequences, the inner
product of their feature vectors forms the kernel value.

4 Experiments and Results

4.1 Data and Settings

4.1.1 Datasets

We evaluated the effectiveness of the proposed method on datasets containing en-
hancers for multiple TFs and their co-factors as well as histone marks from human,
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Data: D, k, k_mers_dict, f eat_index_dict and seq
Result: f eat_vector
scan seq to produce k-mers list k_mers_list;
for i = 0 to length(k_mers_list) do

kmer = k_mers_list[i];
find index ki for kmer in k_mers_dict;
index_array[i] = ki;

end
for i = 0 to length(index_array) do

idx1 = index_array[i];
if idx1 = 0 then

for j = 0 to i+D+ k do
idx2 = index_array[ j];
if idx2 = 0 then

find index f i for idx1 : idx2 in f eat_index_dict;
f eat_vector[ f i]++;

end
end

end
end

Algorithm 1. Algorithm for counting word combination features

mouse, and C. elegans. Specifically, as positive datasets, we used datasets provided
by Yanez-Cuba et al [18] and Fletez-Brant et al [2].

Yanez-Cuba et al [18] have compiled several sets of enhancers based on data from
previous work. The datasets include enhancers for the following TFs and histone
marks: TAL1 (from [10]), HNF4A,GATA6, CDX2, and H3K4me2 (from [17]), for
different cell lines. The original datasets contain only short fragments correspond-
ing to ChIP peaks. Therefore, for each fragment, we extended from 300 to 500 bp
in both directions to get an enhancer sequence of approximately 1000 bp, and used
these sequences to form positive sets. To generate negative sets, we use the method
by Lee et al [7]. This method generates null sequences (without enhancers) by ran-
domly selecting DNA sequences from the same genome and have the same length
and repeat fraction distributions. The Kmer-Svm Server [2] implements this method
and we use this server to generate negative datasets for all our experiments. In the
following section, we will use this collection of datasets (referred to as the first col-
lection) for exploring different settings of our method as well as for comparison with
existing methods.

The second collection of datasets is the same as used by Fletez-Brant et al [2].
These datasets contain enhancers obtained through ChIP-seq or DNase-seq experi-
ments for several TF binding sites: ESRRB (in mouse ES cells), GR (in mouse 3134
and AtT20 cells), EWS-FLI (in human EWS502 and HUVEC cells). The datasets
were provided with both positive and negative sequences, extended from peak
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fragments appropriately and we used them as is. In our experiments, we used the
datasets from this second collection only for comparison of our and other methods.

4.1.2 Experiment Settings

We implemented the proposed method in Matlab using the built-in SVM algorithm
with linear kernel and parameter C = 1. All experiments were performed with hex-
amers (k = 6). This value of k has been proved to deliver the best performance [7].
For each set of data, we ran several experiments, varying the following parameters:
method of selecting k-mers, number of selected k-mers, maximum distance between
two k-mers in a valid feature.

The performance of the classifier was judged by two metrics: the area under the
ROC curve (AUROC) and the PR curve (AUPRC). The AUROC is the area under the
ROC which is a curve plotting true positive rate (sensitivity) against false positive
rate (1-specificity) at different SVM score thresholds. It measures the probability
that a randomly selected positive sample will score higher than a randomly selected
negative sample. The PR curve plots Precision against Recall and AUPRC could be
interpreted as what is the probability that a sequence really contains enhancer if the
classification said so. The ROC could yield a better performance for a classifier in
the case of imbalance training examples where as the PR curve directly assesses the
accuracy of positive predictions.

All classifiers were evaluated with 5-fold cross validation protocol, in which a
classifier is trained with four fifth of the data set and tested on the rest. The AUC
and PR scores are averaged over the five folds.

4.2 Results

4.2.1 The Effect of Feature Selection Methods

The first experiment was designed to verify the effect of feature selection methods
on prediction accuracy. Recall that for this experiment, we used only datasets from
the first collection. The SVM−based and AdaBoost-based feature selection method
were run to select 100 most important hexamers. For the SVM−based method, all
three strategies were used. Selected hexamers were then used to produce combina-
tion features with distance between two hexamers not exceeding 100 bp. Table 1
summarizes AUROC and AUPRC scores for five datasets using the four selection
methods. In all tables, (j), (p) and (d) stand for jurkat, proliferating and differen-
tiated cell lines respectively. As shown, the selection method with the best AUC
values is SVM+. SVM+ achieved the highest AUROC scores in four and the best
AUPRC scores in three out of five datasets. The second best SVM+− achieved the
highest scores in just one case. The results also show that using k-mers with nega-
tive weights as features is harmful for prediction accuracy. The SVM− option, i.e.
using only negative weight k-mers, achieved the worst accuracy. In general, features
selected by SVM yield higher AUC scores than by AdaBoost, making it more con-
venient to use SVM for both feature selection and subsequent classification.
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Table 1 AUC scores for different feature selection methods

Method SVM+ SVM+− SVM− AdaBoost

ROC PR ROC PR ROC PR ROC PR

TAL1(j) 0.9133 0.5846 0.9088 0.5829 0.8302 0.3847 0.9046 0.5602
HNF4A(d) 0.8395 0.3903 0.8416 0.4002 0.7748 0.2899 0.8368 0.3811
GATA6(p) 0.9754 0.8218 0.9734 0.8161 0.8992 0.5774 0.9726 0.8113
CDX2(d) 0.8594 0.4254 0.8547 0.4222 0.7936 0.3338 0.8492 0.4190
H3K4me2(d) 0.7976 0.2952 0.7959 0.2996 0.7721 0.2633 0.7966 0.3068

4.2.2 The Effect of Feature Number and Distance

In the second experiment, we used SVM+, the method that has delivered the most
accurate results, and experimented with different feature numbers and distance val-
ues. The number of selected k-mers (N) was set to 10, 30, 50, 100, and the maximum
distance (D) between two k-mers was set to 10, 30, 50, 100, and 200 bp. Due to space
limit, Tab. 2 show only highest AUC values and corresponding N and D.

As shown, N = 100 yielded superior AUPRC scores for all five datasets, although
it achieved the best AUROC scores for only two out of five datasets. The best AU-
ROC scores for the other three datasets were achieved with N = 30, although the
difference in AUROC scores for N=30, 50, and 100 is not statistically significant
(according to paired T-tests with threshold 0.05). The best AUROC and AUPRC
scores were achieved with D = 100 on three datasets and D = 30 on two other
datasets. The difference in the best values of D = 100 may be attributed to the vari-
ability in spatial constraints for different enhancer types, as reported previously [18].
Overal, the combination of N = 100 and D = 100 provides the best results and will
be used in the remaining experiments.

Table 2 The best AUROC and AUPRC scores and corresponding N and D for SVM+ feature
selection method

Dataset Best AUROC N D Best AUPRC N D

TAL1(j) 0.9133 100 100 0.5846 100 100
HNF4A(d) 0.8518 50 200 0.4141 50 200
GATA6(p) 0.9769 30 100 0.8265 50 200
CDX2(d) 0.8594 100 100 0.4301 50 200
H3K4me2(d) 0.8050 30 30 0.3109 10 200
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4.2.3 Comparison with Existing Methods

We compared our method with the method by Lee et al [7] (referred to as SK). In
that method, linear SVMs with spectrum kernels are used to predict enhancers from
genomic sequences. Experiments have shown that the method achieves state-of-the-
art prediction accuracy in predicting mouse enhancers [7, 2] and therefore we used
only the method by Lee et al in our comparison. The authors of that method provides
an implementation of the method at http://kmersvm.beerlab.org,which we used with
default parameters in our experiments. The size of negative sets was set to 10000
sequences. The comparison was performed in the datasets from both collections.
Our method (called WCF) was run with SVM+, N = 100, and D = 100.

Table 3 summarizes the average AUROC and AUPRC scores of the methods.
For all the datasets from the first collection, the proposed method outperforms
SK in terms of both AUROC and AUPRC. The improvement of AUROC is from
nearly 2% (for H3K4me2(d)) to 5%(TAL1(j)). The improvement of AUPRC is more
substantial, which is more than 10% in two cases (TAL1(j) and GATA6(p)). For
the datasets from the second collection, two methods achieve comparable results.
More precisely, the proposed method perform worse than SK in three out of five
datasets, however the differences are negligible (< 0.5%) and not statistically sig-
nificant (paired t-test). A possible explanation for the difference in performance of
our method with two data collections is the differences in organization of TF bind-
ing sites in two cases. Since our method explicitly model the constraints on relative
locations of combinative binding sites, it would be more suitable for enhancers with
such constraints, which seem to be the first case, while it does not influence the
results when such constraints are not tight, and the second collection may be such
a case. Overall, our method outperforms SK substantially in half the cases and per-
forms comparably in the other cases.

4.2.4 Analysis of Important Features

After training, a linear SVM outputs a weight vector, each element of which corre-
sponds to an input feature. Features with larger absolute weights are more important
because they contribute more to the final score. Following Lee et al [7], we ask
if features with large positive weights are also biologically meaningful. For each
dataset, we list the features, both single and combination, with the highest positive
weights and find corresponding (if any) TFs in databases of known TFBSs. Due to
space limit, we show only top 10 features for CDX2(d) (Tab. 4). As shown, nine out
of 10 top features are combination ones, suggesting that for this dataset, combina-
tion features are more predictive than single ones. More importantly, most highly
ranked words are known TFBSs for CDX2, GATA, HNF4A, FOXA, AP-1, suggest-
ing that combinations of these motifs are important for CDX2 binding events to
occur. To verify this, we compare the results with previous findings. Using experi-
mental methods, Verzi et al [17] found that CDX2 TF partners with distinct motifs
during different cell states. Specifically, GATA motifs are found close to the binding
site of CDX2 during proliferating state while CDX2 binding site regions specific to
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Table 3 Comparison of enhancer prediction with Spectrum Kernel (SK) [7] and Word Com-
bination Feature Kernel (WCF)

Kernel WCF SK Differences

AUROC AUPRC AUROC AUPRC AUROC AUPRC

TAL1(j) 0.9133 0.5846 0.8678 0.4785 +0.0455 +0.1062
HNF4A(d) 0.8395 0.3903 0.8164 0.3526 +0.0231 +0.0377
GATA6(p) 0.9754 0.8218 0.9499 0.7180 +0.0255 +0.1038
CDX2(d) 0.8594 0.4254 0.8276 0.3895 +0.0318 +0.0359
H3K4me2(d) 0.7976 0.2952 0.7849 0.2902 +0.0128 +0.0050

EWS502 0.9612 0.9527 0.9640 0.9570 -0.0028 -0.0043
HUVEC 0.9621 0.9610 0.9600 0.9590 +0.0021 +0.0020
3134 0.8934 0.8701 0.8970 0.8740 -0.0036 -0.0039
Att20 0.9051 0.7769 0.9050 0.7840 +0.0001 -0.0071
ESRRB 0.9148 0.9282 0.9160 0.9310 -0.0012 -0.0028

Table 4 Top 10 features with highest positive weights as returned by SVM for CDX2 (d)
binding sites

Features
Reverse

complements
SVM
weights

Known
TF(s)

CATAAA CTTATC TTTATG GATAAG 15.804 CDX2 GATA

AGGGCA CATAAA TGCCCT TTTATG 14.891 HNF4A CDX2

CAAACA CAAAGG TGTTTG CCTTTG 14.613 FOXA HNF4A

AATAAA GACTCA TTTATT TGAGTC 14.590 CDX2 AP-1

ATAAAA CTTATC TTTTAT GATAAG 14.394 CDX2 GATA

GCCCCA GGCCCC TGGGGC GGGGCC 13.826

AGAGAG CTCTCT 13.471 GATA

AGTCAT CATAAA ATGACT TTTATG 13.053 AP-1 CDX2

CAAAGG TAAACA CCTTTG TGTTTA 13.007 HNF4A CDX2

CATAAA CCACCC TTTATG GGGTGG 12.905 CDX2

differentiated cell show a significant enrichment of HNF4A, AP-1 and FOXA mo-
tifs. These are almost the same motifs we found. The agreement between motif sets
found by our method and reported by Verzi et al provides evidence that the motifs
of highly ranked combination feature are biologically meaningful, and the proposed
method can be used to get insight of enhancer organization.
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5 Conclusion

We have presented a novel method for enhancer prediction using only sequence data.
Based on generic features in forms of words extracted from genomic sequences, we
introduce a new type of features that are pairs of words satisfying certain constraints
on their locations. We have developed a fast feature extraction method that combines
feature selection with a fast word pair counting algorithm. In a comparison with a
leading method, using such word pairs as additional features for SVM classifiers
has resulted in improvements of prediction accuracy as measured by AUC values of
ROC and PR in half the cases while does not affect the accuracy in the others. The
most important word combination features found by SVMs are biologically mean-
ingful, thus providing additional information about enhancer content and structure.
In this work, we consider only pairs of words and one type of spatial constraints
(distance). However, the method can be extended to consider other types of con-
straints as well as combinations with more than two words to cover cases with more
complex enhancer organization.
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