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Recently, many Deep Learning (DL) fuzzers have been proposed for API-level testing of DL libraries. However, they either perform

unguided input generation (e.g., not considering the relationship between API arguments when generating inputs) or only support a

limited set of corner-case test inputs. Furthermore, many developer APIs crucial for library development remain untested, as they are

typically not well documented and lack clear usage guidelines, unlike end-user APIs. This makes them a more challenging target for

automated testing.

To fill this gap, we propose a novel fuzzer named Orion, which combines guided test input generation and corner-case test input

generation based on a set of fuzzing heuristic rules constructed from historical data known to trigger critical issues in the underlying

implementation of DL APIs. To extract the fuzzing heuristic rules, we first conduct an empirical study on the root cause analysis of 376

vulnerabilities in two of the most popular DL libraries, PyTorch and TensorFlow. We then construct the fuzzing heuristic rules based

on the root causes of the extracted historical vulnerabilities. Using these fuzzing heuristic rules, Orion generates corner-case test

inputs for API-level fuzzing. In addition, we extend the seed collection of existing studies to include test inputs for developer APIs.

Our evaluation shows that Orion reports 135 vulnerabilities in the latest releases of TensorFlow and PyTorch, 76 of which were

confirmed by the library developers. Among the 76 confirmed vulnerabilities, 69 were previously unknown, and 7 have already

been fixed. The rest are awaiting further confirmation. For end-user APIs, Orion detected 45.58% and 90% more vulnerabilities

in TensorFlow and PyTorch, respectively, compared to the state-of-the-art conventional fuzzer, DeepRel. When compared to the

state-of-the-art LLM-based DL fuzzer, AtlasFuz, and Orion detected 13.63% more vulnerabilities in TensorFlow and 18.42% more

vulnerabilities in PyTorch. Regarding developer APIs, Orion stands out by detecting 117% more vulnerabilities in TensorFlow and 100%

more vulnerabilities in PyTorch compared to the most relevant fuzzer designed for developer APIs, such as FreeFuzz.
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1 INTRODUCTION

The use of deep learning (DL) in modern software systems is now widespread and continues to grow. Many successful

safety-critical applications have been built on top of DL libraries such as autonomous driving systems [25, 63, 65],

healthcare [6, 61], and financial services [22]. As a consequence, there has been a growing concern about vulnerabilities

in DL systems. Moreover, as DL applications become new targets for malicious attacks [29, 33], reliability and robustness

become critical requirements for these applications due to their potential impact on human life [4, 8, 9, 11, 16, 30, 39, 47].

In recent years, many fuzzers have been proposed for fuzzing DL APIs [19–21, 53, 55]. Specifically, FreeFuzz [53]

performed API-level testing via random fuzzing on end-user APIs of TensorFlow and PyTorch collected from three

different sources, i.e. API reference documentation, DL models in the wild, and developer tests. DeepRel [21] extended

FreeFuzz by random mutation of semantically related APIs in terms of equivalence values and statuses. DocTer [55]

performed fuzz testing via automatic extraction of constraints from the API reference documentation of three DL

libraries (i.e., TensorFlow, PyTorch, and MXNet). TitanFuzz [19] leveraged the power of Large Language Models

(LLMs) [23, 54, 60] to generate inputs tailored for testing DL APIs. AtlasFuzz [20] extended TitanFuzz by including

unusual programs mined from open source by LLMs to guide the generation of test inputs. Although existing DL fuzzers

have shown great potential in finding real-world DL vulnerabilities, they suffer from the following limitations:

Challenge 1: Unguided Input Generation. Existing DL fuzzers [19–21, 53, 55] mainly treat the parameters of DL

APIs independently in API-level fuzz testing. However, during our empirical study, we find that some vulnerabilities

require a special combination of different input arguments, e.g., mismatch between input arguments of DL APIs is

one of the major root causes of reported security vulnerabilities. Figure 1 shows an example vulnerability
1
exposed by

mismatch between dimensions of the input tensors in earlier releases of TensorFlow. The description of the vulnerability

report states that the implementation of tf.raw_ops.SparseTensorDenseAdd lacks validation of the input arguments,

resulting in undefined behavior. According to the API reference documentation of tf.raw_ops.SparseTensorDenseAdd,

the first dimension of a_values is expected to match with the first dimension of a_indices, and the first dimension of

a_shape should align with the second dimension of a_indices. This complicated relationship imposes a challenge for

existing fuzzers, as they cannot typically explore and discover such nuanced correlations among the input arguments of

DL APIs. As a result, triggering vulnerabilities exposed by guided input generation becomes practically implausible

within the scope of conventional and LLM-based fuzzing techniques.

Solution: Guided Input Generation using Historical Rules. To address Challenge 1, we propose guiding the

generation of test inputs for fuzzing DL APIs using heuristic rules derived from historical vulnerabilities triggered

by specific DL API argument patterns. Our key insight on the guided input generation of test inputs is that security

vulnerabilities in DL libraries often manifest when APIs encounter a mismatch between input arguments. Figure 1 (the lower

box) provides an example fuzzing heuristic rule and the corresponding generated test case illustrating our approach to

solving the aforementioned problem by focusing on the mismatch between input arguments. Initially, we perform

a root cause analysis by summarizing a set of historical vulnerabilities attributed to mismatches between input

arguments from DL APIs (see Section 2). Using the insights from this root cause analysis, we formulate a set of

fuzzing heuristics rules designed to produce targeted test inputs capable of exposing such vulnerabilities (refer to

Table 3 for a detailed explanation of these fuzzing heuristics rules). As shown in Figure 1, the constructed rule, in the

form of a mutator function, alters the dimensions of the input tensors, ultimately triggering a segmentation fault. More

specifically, the generated test case features two input tensors with conflicting dimensions: the first tensor possesses a

1
https://github.com/tensorflow/tensorflow/security/advisories/GHSA-rc9w-5c64-9vqq
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(3D) shape, while the second tensor has a (2D) shape. The generated test inputs violate the constraints outlined in the

API reference documentation for tf.raw_ops.lower_bound, which specifies that both sorted_inputs and values should be

(2D) tensors.

Fig. 1. A motivational example that shows how Orion used TensorFlow security advisory to build a fuzzing heuristic rule that models
the correlation between input parameters of the API gen_array_ops.lower_bound which eventually resulted in the detection of a
segmentation fault.

Challenge 2: Lack of Support for Corner Case Generation. Existing conventional DL fuzzers at the API level [19–

21, 53, 55] suffer from two primary limitations when it comes to generating corner case test inputs. First, their heuristics

rules for corner case test input generation are random and unguided. Random values may not accurately replicate

real-world vulnerabilities or tainted inputs provided by external attackers. API calls often rely on specific data formats,

constraints, or patterns that random values may not adhere to. This can lead to missing the detection of critical

vulnerabilities. For example, consider a documented issue within the TensorFlow GitHub repository
2
. In this case, a

2
https://github.com/tensorflow/tensorflow/issues/51908

Manuscript submitted to ACM



4 Nima Shiri Harzevili, Mohammad Mahdi Mohajer, Moshi Wei, Hung Viet Pham, and Song Wang

TensorFlow user reported a crash in the tf.pad API when called with large padding sizes. Our proposed fuzzer,

Orion, successfully identified this security vulnerability, while it went unnoticed by other studied DL fuzzers. The reason

behind this lies in their approach of generating arbitrary test inputs for DL APIs, rendering them essentially incapable

of detecting vulnerabilities that manifest only under extreme corner-case conditions. As for LLM-based DL fuzzers like

TitanFuzz and AtlasFuzz, they primarily focus on addressing logical bugs by modeling context information and DL API

usage call sequences, rather than detecting security vulnerabilities through corner case test input generation.

Solution: Guided Corner Case Generation using Historical Rules. To effectively address the challenge of limited

corner case test input generation, we analyze historical security vulnerability data to identify fuzzing heuristic rules

about the types of input, corner case conditions, or unusual scenarios that have historically resulted in software security

vulnerabilities. These corner case fuzzing heuristic rules (as presented in Table 3) serve as guidance for Orion’s corner

case generator, instructing it on how to intelligently generate or mutate test inputs. What makes these constructed

fuzzing heuristic rules particularly valuable, compared to the traditional and LLM-based DL fuzzing techniques, is their

ability to accurately mimic real-world corner cases that have historically exposed software vulnerabilities.

Challenge 3: Lack of Testing Developer APIs. Current conventional and LLM-based DL fuzzers [19–21, 53, 55]

predominantly concentrate their testing efforts on end-user DL APIs. This focus arises from the fact that DL libraries

often lack comprehensive documentation and usage guidelines for developer APIs, in contrast to the well-documented

nature of end-user APIs.

Solution: Modeling Developer API Context Information. To overcome the challenge, we developed a lightweight

static analyzer and collected developer API context information heuristically. The core idea is to focus on internal

Python modules within the DL libraries where all developer APIs are located which act as an intermediate between

Python client APIs, i.e., end-user APIs, and the backend implementation of DL libraries.

Our assessment demonstrates that Orion has identified a total of 135 vulnerabilities on the latest releases of

TensorFlow (2.13.0) and PyTorch (1.13.1), and 76 of them have been verified by library developers. Of these 76 confirmed

vulnerabilities, 69 were previously unknown and 7 have already been addressed and resolved. The remaining bugs

are pending further confirmation. Specifically, Regarding end-user APIs, Orion uncovers 45.58% and 90% additional

vulnerabilities in TensorFlow and PyTorch compared to the leading conventional DL fuzzer, that is, DeepRel. Compared

to the cutting-edge LLM-based fuzzer, i.e. AtlasFuzz, Orion could detect 13.63% and 18. 42% more vulnerabilities in

TensorFlow and PyTorch, respectively. In terms of developer APIs, Orion could outperform FreeFuzz (the only

applicable baseline) by detecting 117% and 100% more vulnerabilities on TensorFlow and PyTorch respectively. This

paper makes the following contributions:

• We present a simple yet effective approach to API-level testing of deep learning libraries. To the best of our

knowledge, this is the first study to leverage historical vulnerability data for the creation of fuzzing heuristic

rules.

• We characterize and categorize a set of fuzzing heuristic rules based on an empirical study of 376 security records

extracted from the TensorFlow security advisory
3
and GitHub repository of PyTorch.

• We design and develop a DL fuzzer, Orion, that utilizes the fuzzing heuristics rules to guide its input generation.

Orion also instruments both end-user and developer APIs specifically designed to test downstream components

of DL libraries.

3
https://github.com/tensorflow/tensorflow/security/advisories.
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• Orion can find 135 security vulnerabilities of which 76 of them are already confirmed by library developers.

Among the confirmed security vulnerabilities, 69 of them are new, and 7 of them are already fixed. The rest of

the reported security vulnerabilities are pending and awaiting further confirmation.

2 EMPIRICAL ANALYSIS OF HISTORY SECURITY VULNERABILITIES

To characterize and gain insight into fuzzing heuristic rules, we conducted an empirical study on 376 historical security

vulnerabilities in PyTorch and TensorFlow to understand their root causes. In this section, we explain our approaches

to collecting and analyzing these records, as well as extracting the fuzzing heuristic rules that Orion employs to guide

its fuzzing operations.

2.1 Data Collection

In this work, we gathered historical security vulnerability data from two different sources for TensorFlow and PyTorch:

issues in the GitHub repository for PyTorch and the TensorFlow security advisory
4
. The reason for collecting security

records from GitHub for PyTorch is that, at the time of writing this paper, there were only four reported security

vulnerabilities in its CVE repository
5
. For TensorFlow, we meticulously reviewed all 407 reports available at the time of

writing this paper on its security advisory page.

To prevent data leakage and ensure the fuzzing heuristic rules maintain their generalizability, we adopt a strategy of

using earlier releases of PyTorch and TensorFlow to craft the rules, while employing the most recent releases of each

library as test data. For TensorFlow, we leverage versions 2.3.0 through 2.10.0 as historical data, with release 2.13.0

serving as the test data. Similarly, for PyTorch, we utilize versions 0.4.1 to 1.13.0 as historical data, while employing

release 1.13.1 as the test dataset. This approach helps to ensure that our fuzzing heuristic rules remain robust and

applicable across different versions while also validating their effectiveness on the latest releases of the libraries.

2.1.1 Automated collection of real-world security vulnerabilities. For the automatic collection of issues from PyTorch,

we iterated through all issues available in its repository. We used keyword-based matching approaches, similar to those

used in [49, 51, 66], to automatically filter irrelevant issues and collect those related to security vulnerabilities. Note that

filtering rules are only applied for PyTorch. For TensorFlow, we only collected records from its security advisory and

since those records have been assigned CVE IDs, we did not perform any automatic and manual filtering for TensorFlow.

The chosen keywords for the filtering include: Numerical and Memory-related vulnerabilities: buffer overflow,
integer overflow, integer underflow, heap buffer overflow, stack overflow, and null pointer dereference6. Logical vulner-
abilities: wrong result, unexpected output, incorrect calculation, inconsistent behavior, unexpected behavior, incorrect

logic, wrong calculation. Performance vulnerabilities: slow, high CPU usage, high memory usage, poor performance,

slow response time, performance bottleneck, performance optimization, resource usage, race condition, memory leak. As

a result, we collected 1,739 vulnerability-related issues from the PyTorch GitHub repository. However, our manual

analysis revealed that such automated approaches produce numerous false positives. This occurs because not all issues

in the PyTorch GitHub repository pertain to actual software vulnerabilities. Many unrelated issues involve the CI

infrastructure, documentation, and feature requests. In the following section, we will discuss our manual filtering

approach to remove these unrelated issues.

4
https://github.com/tensorflow/tensorflow/security/advisories

5
https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=pytorch

6
To save space, we have not incorporated all security-related terms in the manuscript. However, a comprehensive list of all keywords can be found in the

GitHub repository associated with this paper.
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Table 1. Statistics of our curated dataset used for empirical study. The numbers in parenthesis are the total number of unique records
for issues and CVE.

Library # Issues # CVE # PR # Commits

PyTorch 98 (89) N.A 19 50

TensorFlow N.A 278 (220) 8 236

2.1.2 Manual filtering. We manually examined the collected data to obtain the final list of vulnerabilities related to

PyTorch. Specifically, for each issue, we carefully reviewed the issue title, description, discussions, log messages, etc.

We performed the manual analysis in two rounds. Round 1: Three authors independently reviewed the PyTorch records.

The authors extracted multiple pieces of information for each bug, that is, the buggy API, the impact of the bug (log

messages or stack traces), how the bug can be triggered, and the bug description. Once the information is extracted,

the authors cross-check the labeled bugs to mark possible disagreements. Round 2: All authors were involved in the

manual analysis of the records in Round 1, and disagreements were resolved with group discussions. At the end of the

round, we discarded any bug in which the authors could not reach a consensus.

Note that the following types of bugs, which are out of scope, were excluded:

• Vulnerabilities specific to certain platforms, such as Windows, Android, or iOS.

• Build and configuration issues.

• Bugs arising from external libraries such as torchvision or torchaudio.

• Bugs that do not require the input parameters to be triggered.

After applying these exclusion criteria, we identified a total of 98 issues related to security vulnerabilities in PyTorch.

In total, our root cause analysis encompassed 376 DL security vulnerability records, with 278 records sourced from

TensorFlow and 98 records obtained from PyTorch. Table 1 shows the total number of issue records and CVE records

for PyTorch and TensorFlow (including unique records for each library), as well as the total number of unique pull

requests and commits. We can also observe that the total number of commits of TensorFlow is higher than the total

number of unique CVE records, the reason is that some CVE records have multiple commits. We did not use issues for

TensorFlow and solely relied on CVE records that are already confirmed as security records. On the other hand, since

PyTorch does not have any reported CVEs, we rely on the reported issues in their GitHub repository.

2.2 Construction of Fuzzing Heuristics Rules

To construct fuzzing heuristic rules, we initially performed manual analyses of the vulnerability records collected to

explore potential input patterns that contribute to these vulnerabilities. For CVE records, we first thoroughly examined

the description of reported vulnerabilities and the provided links to the TensorFlow security advisory. Subsequently, we

reviewed the vulnerability description, minimum reproducing example, and the link to the commit that patched the

security issue. Regarding commits, we focused on code changes to identify the root cause of the issue in the backend

implementation. In the case of PyTorch security records, our review encompassed issue descriptions, discussions, related

issues, and reproducing examples, all aimed at identifying the factors contributing to vulnerabilities. Specifically, we

extracted the following factors from each record:

Manuscript submitted to ACM
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Table 2. The notations we used in this paper.

Notation Explanation

Λ A mutation function.

𝑇𝑗 < 𝑣, 𝑠
𝐷1,2,...,𝑟

𝑖,𝑗
, 𝑑𝑡𝑦𝑝𝑒 > A triplet which defines a tensor.

𝑣 The value of the tensor subject to 𝑣 ∈ {Z,R,C}.
𝑠𝑖,𝑗 Is the dimension of the tensor in the current rank.

𝑠𝐷 1,2,...,𝑟
Is the rank of tensor.

𝑑𝑡𝑦𝑝𝑒 Denotes the tensor data types subject to 𝑑𝑡𝑦𝑝𝑒 ∈ 𝐷𝑇 .

𝑖, 𝑗, 𝑟 , A set of indices subject to 𝑖, 𝑗, 𝑟 ∈ Z ∧ ≠ C|R.
𝑐𝑎𝑠𝑒𝑥 Large/Zero value corner case generator subject to 𝑐𝑎𝑠𝑒𝑥 ∈ R|𝑐𝑎𝑠𝑒𝑥 ∈ Z.
𝑐𝑎𝑠𝑒𝑛 Negative value corner case generator subject to 𝑐𝑎𝑠𝑒𝑛 ∈ R|𝑐𝑎𝑠𝑒𝑛 ∈ Z.
𝑐𝑎𝑠𝑒𝑛𝑎𝑛 NaN corner case generator.

𝑐𝑎𝑠𝑒𝑛𝑜𝑛𝑒 Python 𝑁𝑜𝑛𝑒 corner case generator.

𝑐𝑎𝑠𝑒𝑚𝑡 Empty value corner case generator.

𝑐𝑎𝑠𝑒𝑛𝑜𝑎 Non-ASCII character string corner case generator.

𝑎𝑟𝑔 A dummy argument which can take any type.

𝐿 denotes any Python list.

Table 3. Summary of constructed fuzzing heuristic rules and their corresponding distribution for PyTorch and TensorFlow.

No Guided Input Generation Rules Rule Notation PyTorch TensorFlow

1 Tensors Shape Mismatch Λ(𝑇1,𝑇2, ...,𝑇𝑗 ) =𝑇1 < 𝑣, s1
D1,2,..,r
i,j , 𝑑𝑡𝑦𝑝𝑒 >, ...,𝑇𝑗 < 𝑣, sk

D1,2,..,r
i,j , 𝑑𝑡𝑦𝑝𝑒 >

𝑠
𝐷
1,2,...,𝑟

1
≠𝑠

𝐷
1,2,...,𝑟

𝑘

15 70

2 Tensors Dimension Mismatch Λ(𝑇𝑙 , 𝑎𝑟𝑔𝑖 ) = {𝑇1 < 𝑣, sD1,2,..,r
i,j , 𝑑𝑡𝑦𝑝𝑒 >, argi

argi∈Z
}

𝑎𝑟𝑔𝑖≠𝑠
𝐷
1,2,...,𝑟

2 5

3 Tensors List-Indices Mismatch Λ(𝑇𝑙 , 𝐿𝑖 ) =𝑇𝑙 < 𝑣, sD1,2,..,r
i,j , 𝑑𝑡𝑦𝑝𝑒 >

|𝐿𝑖 |≠ |𝐷1,2,...,𝑟

, Li = {𝑘1, 𝑘2, ..., 𝑘 𝑗 } 0 9

4 List Indices Elements Mismatch Λ(𝑇𝑙 , 𝐿𝑖 ) =𝑇𝑙 < 𝑣, sD1,2,...,r , 𝑑𝑡𝑦𝑝𝑒 >
Li j≠r

, 𝐿𝑖 = {𝑘1, 𝑘2, ..., kj} 0 3

5 List Indices Length Mismatch Λ(𝐿𝑖 , 𝐿𝑗 ) = Li = {𝑥1, 𝑥2, ..., 𝑥𝑛}, Lj = {𝑎1, 𝑎2, ..., 𝑎𝑘
|Li |≠ |Lj |

} 0 10

Corner Case Input Generation Rules Rule Notation
6 Tensor Corner Case Generator Type 1 Λ(𝑇𝑖 ) = 𝑇𝑖 < {casex |casen |casemt |casenan}, 𝑠𝐷1,2,..,𝑟

𝑖, 𝑗
, 𝑑𝑡𝑦𝑝𝑒 > 37 70

7 Tensor Corner Case Generator Type 2 Λ(𝑇𝑖 ) = 𝑇𝑖 < 𝑣, 𝑠
Dcasex,casen,casemt
𝑖, 𝑗

, 𝑑𝑡𝑦𝑝𝑒 > 6 4

9 Scalar Tensor Corner Case Generator Λ(𝑇𝑖 ) =𝑇𝑖 < 𝑣, 𝑠
𝐷1,2,..,𝑟

𝑖, 𝑗
, 𝑑𝑡𝑦𝑝𝑒 >

𝑟=1

2 8

10 Non-Scalar Tensor Corner Case Generator Λ(𝑇 𝑠=1
𝑖

) = 𝑇𝑖 < 𝑣, 𝑠
𝐷1,2,..,𝑟

𝑖, 𝑗
, 𝑑𝑡𝑦𝑝𝑒 > 0 22

11 Preemptive Corner Case Generator Type 1 Λ( 𝑎𝑟𝑔𝑖
𝑎𝑟𝑔𝑖 ∈Z |R

) = 𝑐𝑎𝑠𝑒𝑥 |𝑐𝑎𝑠𝑒𝑛 |𝑐𝑎𝑠𝑒𝑛𝑎𝑛 |𝑐𝑎𝑠𝑒𝑛𝑜𝑛𝑒 |𝑐𝑎𝑠𝑒𝑚𝑡 |𝑐𝑎𝑠𝑒𝑛𝑜𝑎 19 22

13 Preemptive Corner Case Generator Type 2 Λ( argi
argi∈String |argi∈Boolean

) = {casex |casen |casenan |casenone |casemt |casenoa} 1 10

14 List Corner Case Generator Λ(𝐿𝑖 ) = 𝐿𝑖 = {𝑘1, 𝑘2, . . . , 𝑘 𝑗 }
𝑘 𝑗 ∈{casex |casen |casenan |casenone |casemt |casenoa }

10 37

15 Mutate Tensor Data Type Λ(𝑇𝑖 ) = 𝑇𝑗 < 𝑣, 𝑠𝑛×𝑚, 𝑑𝑡𝑦𝑝𝑒 > 6 8

Overall 98 278

Manuscript submitted to ACM
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Root cause. This factor represents the root cause of vulnerabilities in DL libraries, which is crucial when constructing

fuzzing heuristic rules. We extracted 33 unique root cause categories
7
from 376 security records for both TensorFlow

and PyTorch.

Reproducing example. We checked for the presence of stand-alone code examples to reproduce the vulnerability.

Reproducing examples helps us understand which input specifications to DL APIs trigger vulnerabilities, aiding in the

implementation of fuzzing heuristic rules.

Vulnerable Parameter and and its Type. We also extracted information about the vulnerable parameter in the API

input specification and its type. Collecting the type of vulnerable parameter is important because each parameter type

has its weaknesses in terms of fuzz testing. For instance, concerning tensors, two main vulnerable components are

typically identified: tensor values and tensor shapes.

Ultimately, we categorized various fuzzing heuristic rules based on the 33 unique categories of root causes, and the

details are presented in Table 3. It is important to note that the definition of fuzzing heuristic rules is consistent for

both libraries, with the only difference being their implementation, which is specific to each library. In Table 3, we

divide the fuzzing heuristic rules into two sections: Guided Input Generation Rules and Corner Case Input Generation

Rules. For the rules in each category, we implemented an indicator function denoted as Λ, which acts as a mutator. The

first section consists of fuzzing heuristic rules that involve mismatches in the input arguments of DL APIs. We explain

the rules in the following sections:

Tensors Shape Mismatch: The mutator function, Λ, takes input tensors, 𝑇1 to 𝑇𝑗 , and performs a shape mismatch

operation sequentially. To better understand this process, consider the manipulation of two tensors, 𝑇1 and 𝑇2, within

the parameter space of the API under test. The sequence of operations begins by altering the shape of the first tensor,𝑇1.

This shape modification can be achieved through either Rank Reduction or Rank Expansion, with the choice between

these two operations being random. Orion keeps track of the previous operation in a temporary variable for reference.

Now, as the shape mutation of the second parameter begins, the process retrieves the previously recorded operation

from the temporary variable. Then it performs the opposite operation compared to what was executed on the first

parameter. In other words, if the initial operation on the first parameter was Shape Reduction, the new operation

applied to the second parameter is Shape Expansion, and vice versa. This rule ensures that the shape mismatch is

consistently executed as intended.

Tensor Dimension Mismatch: The mutator function associated with this rule requires two inputs: tensor 𝑇𝑙 and an

integer argument 𝑎𝑟𝑔𝑖 . In this context, the integer parameter serves as an indicator for the dimension of 𝑇𝑙 where the

specified operation will be executed. For example, in the API tf.concat([t1, t2], 0), the second parameter specifies that

the concatenation should be performed along the first dimension. The mutator function alters 𝑎𝑟𝑔𝑖 to ensure that the

value of 𝑎𝑟𝑔𝑖 exceeds the input tensor range 𝑇𝑙 .

Tensor List-Indices Mismatch: The mutator function associated with this rule requires two inputs: tensor𝑇𝑙 and a list

indicating multiple dimensions of the input tensor where the operation is expected to be done. The mutator function

alters the range of the list to ensure that the length of the list is not equal to the dimension of the input tensor.

List Indices Elements Mismatch: The mutator function associated with this rule requires two inputs: tensor 𝑇𝑙 and a

list indicating multiple dimensions of the input tensor where the operation is expected to be done. The mutator function

alters the elements within the list to guarantee that they do not match the dimension of the input tensor.

7
Due to space limitations, the details of the summarized root causes are available in the supplementary documentation at [1]
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Fig. 2. Overview of our proposed Orion.

List Indices Length Mismatch: The mutator function associated with this rule requires two input lists. The mutator

alters the length of these two lists to ensure that they do not have equal lengths. This results in incompatibility between

the list indices and the input tensors.

In the second part, we have organized these corner case input generation for preemptive data types and tensor data

types. The detailed explanation of corner case values is explained in Table 3.

Tensor Corner Case Generator Type 1: In this mutation function, the value, 𝑣 in 𝑇𝑗 < 𝑣, 𝑠
𝐷1,2,...,𝑟

𝑖× 𝑗
, 𝑑𝑡𝑦𝑝𝑒 >, of input

tensors undergoes mutation based on the defined corner cases.

Tensor Corner Case Generator Type 2: In this mutation function, the first dimension, i.e.,𝑛 in𝑇𝑗 < 𝑣, 𝑠
𝐷1,2,...,𝑟

𝑖× 𝑗
, 𝑑𝑡𝑦𝑝𝑒 >,

of the input tensor undergoes mutation based on the defined corner cases.

Scalar Tensor Corner Case Generator: If the input tensor is a non-scalar tensor, this operator converts it to a scalar

tensor.

Non-Scalar Tensor Corner Case Generator: If the input tensor is scalar, this function mutates it to a non-scalar

tensor.

Preemptive Corner Case Generator Type 1: In this corner case generator, the parameters of type integer and real

are mutated to one of the corner case values explained in Table 3.

Preemptive Corner Case Generator Type 2: In this corner case generator, the parameters of type string mutated to

one of the following corner cases shown in Table 3.

List Corner Case Generator: In this corner case generator, the values of the Python list are mutated to one of the

following corner cases shown in Table 3.

Mutate Tensor Data Type: In this mutator function, the type of the parameter under test is mutated to one of the

allowed types within PyTorch and TensorFlow.

Orion uses the fuzzing heuristic rules summarized in Table 3 to instruct its fuzzer generator on how to perform

mutations on the test inputs collected from various sources. This process is illustrated in our framework, as shown in

Figure 2.
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3 FRAMEWORK

Test Input Collection (Stage 1): In this initial stage, API test inputs are gathered from various sources, including

library documentation, developer tests, and publicly available repositories on GitHub that utilize TensorFlow and

PyTorch APIs. Further details on this data collection process can be found in subsection 3.1.

API Instrumentation (Stage 2): In the second stage, dynamic instrumentation is employed to trace execution details

for each API invocation. This information encompasses parameter values and types. The collected data is then used

to create a type space, API value space, and argument value space, which are crucial for the subsequent stages. More

information on dynamic instrumentation can be found in subsection 3.1.

History-Driven Fuzzing/Test Case Generation (Stage 3): The third stage introduces our history-driven fuzzer, as

described in subsection 3.2. Utilizing fuzzing heuristic rules, Orion conducts fuzzing on the test inputs retrieved from

its database and generates the corresponding test cases.

Test Execution and Oracles (Stage 4): The final stage involves test execution and oracles, detailed in subsection 3.3.

Test cases generated in the previous stage are executed, and their log messages are filtered based on predefined oracles.

This stage includes running the test cases under two different settings: CPU and GPU. Log messages are parsed according

to the specified oracles. Subsequently, manual analysis is performed to eliminate irrelevant test cases, such as those

resulting from syntax errors or user errors.

3.1 Test Input Collection and API Instrumentation

Following existing work [21, 53], Orion performs test input collection from three sources, that is, API reference

documentation, publicly available repositories, and developer tests. Orion then performs API instrumentation to collect

various dynamic execution information from both end-user and developer APIs (that is, the type and value of each

parameter). In this work, we followed FreeFuzz [53] to instrument end-user APIs for collecting their dynamic execution

information. A significant challenge in automated fuzz testing of DL libraries arises from the fact that many developer

APIs that are essential for library development are often overlooked. This is primarily due to their lack of comprehensive

documentation and clear usage guidelines, which contrast with end-user APIs. To address the problem, we extended

FreeFuzz instrumentation to make it compatible with developer APIs for the TensorFlow library. The reason we only

focused on instrumenting developer APIs for TensorFlow is due to the differing API signatures between developer

APIs and end-user APIs in TensorFlow. End-user APIs are accessible by importing the TensorFlow object with import

tensorflow as tf and then invoking the desired APIs. Developer APIs, however, employ distinct signature names. Initially,

developers must utilize different parent module names for the corresponding APIs at the beginning of the Python file,

using the syntax from tensorflow.python.module_name.sub_module_name.functionality import functionality. Following

this step, developers can utilize functionality anywhere in the codebase to access the desired APIs. In PyTorch, accessing

developer APIs is straightforward, that is, developers can directly call these APIs by appending an underscore after .

such as Torch._, which poses no significant challenge. Moreover, the same API instrumentation employed for end-user

APIs can be utilized for developer APIs in PyTorch, i.e., there is no need for separate tooling for this. To address this

challenge, we devised a solution, shown in the first box of Figure 2, as a lightweight static analyzer leveraging the

Python AST module
8
. This analyzer systematically collects vital data about developer APIs within the TensorFlow

library. Firstly, Orion clones the source code of DL libraries from GitHub and extracts all relevant Python files within

the Python directory of the source codes. These modules act as intermediaries between the backend, where extensive

8
https://docs.python.org/3/library/ast.html
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computations occur, and the client code accessible to end users. Next, for each Python module file, we construct a

corresponding Abstract Syntax Tree (AST). Using the AST visitor functionality provided by the Python AST module,

we systematically extract the names of developer APIs present within each module. The extracted developer API names

are organized into categories based on their respective parent modules. Simultaneously, we construct dependency

statements for each developer’s API name. To ensure the usability of the developer API names, we utilize the Python

inspect module
9
. This module allows us to access live module object information associated with each developer’s

API name, a crucial step in facilitating test input collection. Finally, we pass the live objects for API instrumentation,

covering both end-user and developer APIs.

Developer APIs are crucial for the internal testing and development of TensorFlow. Although they may not be

directly exposed to end users, they play a critical role in the library’s robustness and reliability. Any vulnerabilities in

these APIs can indirectly affect the end-user experience. For example, bugs in developer APIs could lead to performance

issues or security vulnerabilities in end-user-facing functionalities that rely on these internal components. While end

users may not directly exploit these bugs, attackers can still exploit them indirectly through attacks on end-user APIs

or downstream systems that rely on TensorFlow. Vulnerabilities in developer APIs could potentially be leveraged by

attackers to bypass security mechanisms, compromise model integrity, or cause unintended behavior in deployed

TensorFlow models.

3.2 History-Driven Test Case Generation

Before we delve into explaining the process of fuzzing, we define the following notations:

• The API name, denoted as 𝑎𝑝𝑖𝑁𝑎𝑚𝑒 .

• entry, a random test input fetched from the input database associated with 𝑎𝑝𝑖𝑁𝑎𝑚𝑒 .

• 𝑛𝑢𝑚𝐼𝑡𝑒𝑟 , representing the total number of times the API is tested.

• A collection of fuzzing heuristic rules stored as a set of lookup tables, represented as 𝐿0 (𝑡), 𝐿1 (𝑡), ..., 𝐿𝑛−1 (𝑡),
where:

– 𝑡 corresponds to the type of current argument under test.

– 𝑛 signifies the total number of lookup tables. The lookup tables store fuzzing heuristics rules for each parameter

type.

Fuzzer Driver: In the initial step, the fuzzer driver retrieves the list of all available DL APIs collected for fuzzing and

iterates through this list, one API at a time. For each specific API, denoted as 𝑎𝑝𝑖𝑁𝑎𝑚𝑒 , the driver passes this API name

to the Fuzzer Generator component.

Fuzzer Generator: Algorithm 1 shows how the fuzzer generator performs fuzzing based on the constructed fuzzing

heuristic rules. The fuzzer generator receives the API name from the fuzzer driver and retrieves a random test input

for the API 𝑎𝑝𝑖𝑁𝑎𝑚𝑒 from the test input database. The random test input is inputted into 𝑔𝑒𝑡𝑉𝑎𝑙𝑢𝑒𝑆𝑝𝑎𝑐𝑒 , and the

corresponding values for each parameter in the test input are received and assigned to 𝑉𝑆 . Subsequently, the generator

iterates through all the parameters of 𝑉𝑆 . Please note that the fuzzer generator processes parameters one at a time,

mutating the current parameter before moving on to the next. After completing the mutation for an argument, Orion

maintains the state of that parameter and proceeds to the next one. It is important to note that this sequential mutation

is guided by the fuzzing heuristic rules. For example, if the corner case generator is instructed to create test cases

9
https://docs.python.org/3/library/inspect.html
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Algorithm 1 History-Driven Fuzzer Generator

1: procedure Orion(apiName, numIter)

2: lookupTables = 𝐿0 (𝑡), 𝐿1 (𝑡), ..., 𝐿𝑛−1 (𝑡) ⊲ Where 𝑛 is the number of mutation operations and 𝑡 is the argument

type

3: for 𝑖 in |numIter| do
4: entry = getRandomTestInput(apiName) ⊲ Get a random test input for the given API from database

5: VS = getValueSpace(entry) ⊲ Convert the test input to value space for fuzzing operation

6: for arg in VS do
7: argType = GetArgType(arg) ⊲ Get the type of the current argument

8: heuristicRules = lookupTables[argType] ⊲ Get all applicable rules based on the type of the parameter

9: for rule in heuristicRules do
10: if DoTypeMutation() then
11: MutateType(arg) ⊲ Perform type mutation in a random fashion

12: end if
13: Mutate(arg, rule) ⊲ Perform fuzzing on the current parameter according to the current rule

14: end for
15: end for
16: end for
17: end procedure

related to Tensors Dimension Mismatch, the algorithm will only mutate the current tensor and its corresponding integer

parameter representing the dimension of the tensor.

For the current parameter under test, denoted 𝑝 𝑗 , the generator identifies its type(𝑡 ), and then the generator extracts

a list of fuzzing heuristic rules available specific to that parameter type from 𝑙𝑜𝑜𝑘𝑢𝑝𝑇𝑎𝑏𝑙𝑒 . Next, Orion iterates through

all available fuzzing heuristic rules in the current lookup table and applies each rule, denoted 𝑟𝑖 , to the current

parameter 𝑝 𝑗 using its mutation function. To illustrate, if 𝑝 𝑗 represents a tensor, the generator systematically applies all

rules specifically designed for tensors. This iterative process continues until all rules have been applied, ensuring a

comprehensive exploration of the API’s parameter space and corresponding input values (argument space).

Test Case Generator: During this phase of the fuzzer generator, after the test input has undergone fuzzing based

on the extracted fuzzing heuristic rules, the resulting mutated test input is transformed into a Python test case. This

transformation involves the inclusion of all necessary information in the test case. This information encompasses

error-handling statements, statements for both CPU and GPU computations, and alignment of the test case with specific

hardware configurations and computational requirements necessary for accurate execution. Once the test case is

generated, the fuzzer generator submits it to execution.

3.3 Test Case Execution

In this stage, the generated test case is executed to identify potential security vulnerabilities. The log message of the

generated test case is automated parsing to eliminate irrelevant execution logs, such as syntax errors and timed-out

cases. To ensure the accuracy of our findings and minimize potential bias in the results, we also perform a manual

examination and analysis of the output from the executed test cases. During this analysis, we consider the following

oracles.

Crash Oracle: A Crash is defined as an event where the executed test case either halts the Python interpreter or

triggers a runtime error. These issues can sometimes be induced by invalid inputs generated during the fuzzing process.

We use a set of regular expression rules, made up of a set of crash-related keywords, to filter out non-crash-related
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log messages generated during the test case execution phase. The keywords are as follows: Aborted (core dumped),

Assertion failed, Floating point exception (core dumped), Segmentation fault, Check failed, and Bus error (core dumped).

The percentage of filtration is 57.8% and 10% for Pytorch and TensorFlow, respectively. In other words, 57.8% and 10%

of reported security vulnerabilities are not related to crashes and are filtered out using our approach. Please note that

we only use this approach to filter crash-related vulnerabilities from non-crash-related ones. This helped us a lot during

vulnerability triage.

Differential testing: This oracle operates by executing the generated test case under two distinct configurations: one

on CPU and the other on GPU. We performed differential testing on 135 test cases that we reported to the PyTorch and

TensorFlow communities. We manually analyzed 135 log messages to find any discrepancies between generated results

under CPU and GPU settings. Please note that we only did differential testing on the latest releases of PyTorch and

TensorFlow including 1.13.1 and 2.13.0. The time cost of the manual analysis is approximately 24 hours for 135 test

cases.

4 EXPERIMENTAL SETUP

4.1 ResearchQuestions

To evaluate the performance of Orion, we design experiments to answer the following research questions:

• RQ1: What is the performance of Orion compared to the four baselines?

– RQ1.1: What is the API coverage rate of Orion compared to the existing DL fuzzers?

– RQ1.2: What is the performance of Orion compared to traditional DL fuzzers?

– RQ1.3 What is the performance of Orion compared to LLM-based DL fuzzers?

• RQ2: What is the performance of Orion in detecting new vulnerabilities?

• RQ3: What is the contribution of Orion’s fuzzing heuristic rules in detecting vulnerabilities?

4.2 Subject DL libraries

In this paper, we select two widely recognized and extensively used DL libraries, namely TensorFlow and PyTorch, as

our primary experimental subjects. For RQ1 and to compare Orion versus traditional DL fuzzers, we have used earlier

versions of TensorFlow (specifically, releases 2.3.0 and 2.4.0) and PyTorch (releases 1.7.0 and 1.8.0) as the subjects of our

evaluation. Regarding comparison with LLM-based fuzzers, we use their reported releases for TensorFlow and PyTorch

namely releases 2.10.0 and 1.12.0, respectively. For RQ2 RQ3, we have utilized the most recent releases of TensorFlow

and PyTorch, namely, releases 2.13.0 and 1.13.1, respectively.

4.3 Testing Environment

Our machine is equipped with Intel(R) Core(TM) i7-10700F CPU @ 2.90GHz, NVIDIA GTX 1660 Ti GPU, 16GB of RAM,

and Ubuntu 22.04. We run Orion and the baseline fuzzers in separate conda environments. For each release, we created

an isolated conda environment and installed the all required dependencies required by each fuzzer. To manage our

system resources and make the comparison fair, we run one tool at a time. We also run our proposed fuzzer Orion

1000 times for each API. Please note that the fuzzing budget for all tools is set to 60 seconds to make the comparison

fair and unbiased.
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4.4 Baseline Approaches

In this paper, we select five state-of-the-art fuzzing tools as baseline techniques, three conventional tools, and two

LLM-based tools.

FreeFuzz [53]: is a DL fuzzer that performs fuzz testing on TensorFlow and PyTorch libraries for bug detection. We reuse

the replication package of FreeFuzz for comparison and adopt the recommended configurations in our experiments.

We configured FreeFuzz to be executed with 1000 iterations for each API. We configured it to perform value and type

mutation.

DeepRel [21]: extends FreeFuzz by using test inputs from one API to test other related APIs that share similar input

parameters. We carefully analyzed the DeepRel paper and found that its best configuration is 1 iteration with 𝑡𝑜𝑝_𝑘 = 5.

We also run DeepRel 1000 times for each API.

DocTer [55]: is a documentation-driven fuzz testing framework that generates inputs for DL APIs based on specifications

mined from API reference documentation. We run the publicly available DocTer implementation shared by the authors

in our comparison experiments with the suggested configurations. DocTer’s execution involved 1000 iterations for

each API. We carefully studied its paper and realized that conforming inputs are the best setting for bug detection.
10

TitanFuzz [19]: is a cutting-edge DL fuzzer, that harnesses the power of Large Language Models (LLMs) for conduct-

ing API-level fuzzing on TensorFlow and PyTorch. TitanFuzz uses four different groups of mutation operators for

evolutionary fuzzing including argument, suffix, prefix, and method.

AtlasFuzz [20]: is the extension of TitanFuzz where it uses historical bug data collected from the open source to

guide their fuzzier generator with large language models. Note that, different from Orion, it uses historical bug data to

generate unusual programs to expose critical bugs on TensorFlow and PyTorch releases.

In this paper, we directly use the reported vulnerabilities in the replication package of TitanFuzz and AtlasFuzz for

comparison against Orion. In other words, we did not run TitanFuzz and AtlasFuzz for test case generation. The reason

is the incompatibilities that arise between the specific DL releases and their corresponding CUDA configurations. To

illustrate this point, consider TensorFlow 2.3.0, which requires the use of CUDA version 10.1, as specified in the official

TensorFlow documentation
11
. In contrast, TitanFuzz and AtlasFuzz rely on PyTorch 1.12.1 to execute their model, a

requirement documented in their replication package where Torch-1.12.1 is specified. However, PyTorch 1.12.1 requires

CUDA 10.2 for GPU support, as detailed in the PyTorch release history
12
. Attempting to run TitanFuzz and AtlasFuzz

on TensorFlow 2.3.0, for instance, leads to a RuntimeError: CUDA error: no kernel image is available for execution on the

device. We observe similar incompatibility issues on PyTorch releases.

4.5 Evaluation Criteria

Following existing work [53, 55], we use the following evaluation criteria to evaluate the performance of Orion and the

baselines:

Number of covered APIs. The number of covered APIs is a good indicator of how effective a fuzzer can be. The more

APIs are covered, the more vulnerabilities will be discovered and fixed.

Number of vulnerabilities in earlier releases. We also apply Orion on the earlier releases of TensorFlow and PyTorch

including 2.3.0, 2.4.0, 1.7.0, and 1.8.0, respectively, to compare its performance with the baseline approaches, that is,

10
Please note that there is another setting called violating input, though, the number of detected bugs by Conforming inputs is higher than violating

inputs.

11
https://www.tensorflow.org/install/source

12
https://pytorch.org/get-started/previous-versions/
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FreeFuzz, Docter, and DeepRel. Specifically, we use detection rate and fixed rate as two metrics for the comparison. The

detection rate indicates the detection performance of the fuzzer while the fixed rate indicates how many vulnerabilities

are fixed in the latest releases for each library. We consider the release 2.13.0 and 1.13.1 as the latest releases for

TensorFlow and PyTorch respectively.

Number of new detected vulnerabilities. The primary objective of this study is to uncover new vulnerabilities in

the latest releases of TensorFlow and PyTorch, thus we also report the number of new vulnerabilities detected for the

studied DL libraries. The new releases include 2.10.0, 2.11.0, and 2.13.0 for TensorFlow and 1.12.0 and 1.13.1 for PyTorch.

Contribution of Fuzzing heuristics rules. We also measure the contribution of the fuzzing heuristic rules introduced

in this paper to the detection of new vulnerabilities in the latest releases of TensorFlow and PyTorch.

5 RESULT ANALYSIS

5.1 RQ1: Comparison with Baselines

To evaluate the performance of Orion against the five baselines, we compare the number of covered APIs by each

tool across TensorFlow and PyTorch, the detection performance of Orion against the traditional DL fuzzers, and the

detection effectiveness of Orion against LLM-based DL fuzzers.

5.1.1 Approach. RQ1.1: API coverage: Regarding TensorFlow, to be able to run the test cases effectively and perform

instrumentation on the developer APIs, we build it from source by the default configuration as suggested in its reference

manual
13

on the release 2.4.0. After building the library, we simply run all Python files within tensorflow/python directory

ending with *.py. Similarly, we build PyTorch from the source using the default configuration on 1.8.0. Since building

PyTorch is computationally expensive, we perform compilation in parallel with four threads. Then we simply run test

cases written in Python in this directory
14
.

RQ1.2: Comparison against the traditional DL fuzzers: In comparison with the baseline fuzzers, we provide details

on the number of vulnerabilities that were detected and fixed across different versions of TensorFlow and PyTorch. To

perform this evaluation, we executed the tools in a range of releases, specifically versions 2.3.0 and 2.4.0 for TensorFlow

and versions 1.7.0 and 1.8.0 for PyTorch. In this paper, we have considered releases 2.13.0 and 1.13.1 as the most recent

versions for TensorFlow and PyTorch, respectively. It is important to note that when it comes to developer APIs, we

have exclusively displayed the results for FreeFuzz since the four other fuzzers are not compatible with developer APIs.

When it comes to the number of APIs tested, we maintain consistency across FreeFuzz, DeepRel, and Orion, both for

TensorFlow and PyTorch, to ensure a fair comparison. This uniformity is achieved by employing the same number of

APIs for all three fuzzers. This approach is adopted because all of these fuzzers rely on the MongoDB database to store

their test inputs. As for DocTer, we utilize their proprietary seed database that is included in their replicated package.

RQ1.3: Comparison against the LLM-based DL fuzzers: To compare Orion with LLM-based DL fuzzers, we use the

same releases and reported vulnerabilities mentioned in their replication package. The rationale is the compatibility issue

of LLM-based fuzzers with previous releases of TensorFlow and PyTorch (see Section 4.4). Hence, we use TensorFlow

2.10.0 and PyTorch 1.12.0 for the comparison.

5.1.2 Results. API Coverage Results. Table 4 shows the number of APIs covered by the five fuzzers. Please note that

the analysis is based on Orion and AtlasFuzz which is the state-of-the-art DL fuzzer. In the case of PyTorch, TitanFuzz

covers 1,329 APIs while Orion covers 1,751 representing a significant 31% improvement over AtlasFuzz. Similarly, for

13
https://www.tensorflow.org/install/source

14
https://github.com/pytorch/pytorch/tree/master/test
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Table 4. Statistics of covered APIs by each DL fuzzer. The percentage of improvements is computed relative to Orion.

PyTorch TensorFlow

End-User APIs % Improvement Developer APIs End-User APIs % Improvement

FreeFuzz 470 272.5% - 688 486.8%

DocTer 498 251.6% - 911 343.1%

DeepRel 1071 63.5% - 1902 112.2%

TitanFuzz 1329 31.7% - 2215 82.2%

AtlasFuzz 1377 27.2% - 2309 74.83%

Orion 1751 - 2824 1213 -

TensorFlow, AtlasFuzz covers 2,215 APIs while Orion covers 4,037 APIs, which is an impressive 74.8% improvement

over AtlasFuzz. This is because Orion covers both end-user and developer APIs. In total, Orion covers 60.5% more API

compared to AtlasFuzz. The reason for the high number of covered APIs for TitanFuzz and AtlasFuzz is that given a

list of API names, directly generate sample runnable code for each end-user API by using LLMs and the sample code

snippets for fuzz testing and test case generation. In contrast, in our approach, we begin by collecting sample runnable

code from online repositories such as GitHub repositories, which presents challenges such as encountering syntax

errors, version compatibility issues, and the possibility of non-runnable code snippets. Once suitable code samples are

identified, they are executed to gather dynamic execution information specific to the current end-user API, which is

then stored in a database for further processing. This approach inherently faces greater difficulty in collecting test

inputs for end-user APIs due to the complexities associated with sourcing and validating runnable code from online

repositories. Consequently, the Orion process involves additional steps and complexities, making it more challenging to

cover more APIs for the end user. Our high number of developer APIs stems from our innovative test input collection

method, illustrated in Figure 2. This approach involves directly executing TensorFlow’s internal test cases to gather

dynamic execution information for DL APIs. Since the majority of these test cases are runnable, we can significantly

expand the number of test inputs and APIs covered.

Orion vs traditional DL fuzzers. Table 5 shows the detection effectiveness of Orion compared to FreeFuzz on

developer APIs. As shown, Orion outperforms FreeFuzz on both TensorFlow and PyTorch releases significantly. More

specifically, Orion detects 79 and 60 more vulnerabilities versus FreeFuzz. Table 6 shows the detection effectiveness

of Orion compared to the baseline fuzzers. It is observable that Orion excels in terms of vulnerability detection for

both end-user and developer APIs on TensorFlow 2.3.0, Orion stands out as the most effective. Orion takes the lead,

detecting 137 vulnerabilities for end-user APIs, showcasing its robustness in vulnerability detection in TensorFlow

2.4.0. In terms of PyTorch 1.7.0, Orion outperforms all three tools with 5 more vulnerabilities compared to DocTer,

which is the second-best fuzzer in this release. This suggests that both Orion and DocTer are highly effective fuzzers

for this release. Lastly, concerning PyTorch 1.8.0, Orion exceeds FreeFuzz and DocTer in vulnerability detection, but is

surpassed by DeepRel.

Figures 3 present Venn diagrams that illustrate the number of vulnerabilities detected by both Orion and traditional

baseline methods. A key observation is that Orion outperforms in discovering a greater total number of vulnerabilities

across both TensorFlow and PyTorch releases. Regarding traditional DL fuzzers, Orion consistently detects the highest

number of overlapping vulnerabilities when compared to FreeFuzz across all releases of TensorFlow and PyTorch.

In contrast, compared to LLM-based fuzzers, Orion detects fewer overlapping vulnerabilities. This difference can be
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Table 5. Comparison of Orion with FreeFuzz on developer APIs. “Det” denotes the number of detected bugs and “Fixed” is the number
of fixed bugs.

TensorFlow

Tool

2.3.0 2.4.0

Det Fixed Det Fixed

FreeFuzz 67 66 60 60

Orion 146 142 120 113

Table 6. Comparison of Orion with the traditional fuzzers on end-user APIs.

TensorFlow PyTorch

Tool

2.3.0 2.4.0 1.7.0 1.8.0

Det Fixed Det Fixed Det Fixed Det Fixed

FreeFuzz 31 29 90 89 15 10 11 8

DeepRel 68 8 111 23 20 17 75 74
DocTer 68 56 53 42 33 32 31 30

Orion 99 91 137 124 38 15 34 12

attributed to the fact that Orion focuses on security vulnerabilities, whereas LLM-based fuzzers primarily identify

general DL bugs.

Orion vs LLM-based DL fuzzers. Table 8 shows a comprehensive comparison between Orion and LLM-based DL

fuzzers, namely TitanFuzz and AtlasFuzz. The results demonstrate Orion’s superior performance, particularly evident

in TensorFlow 2.10.0 and PyTorch 1.12.0, where it exhibits a substantial improvement of 13.63% and 18.42%, respectively.

Furthermore, Figure 3 provides insights into the overlap in the number of detected vulnerabilities among Orion,

TitanFuzz, and AtlasFuzz. It’s worth noting that the total number of overlaps among the three tools is quite limited. This

observation underscores the fact that each tool excels in identifying different categories of vulnerabilities. Specifically,

Orion focuses primarily on the detection of crash vulnerabilities, while TitanFuzz and AtlasFuzz focus on logical

vulnerabilities. This divergence in focus results in a higher intersection of detected vulnerabilities in the case of PyTorch,

as illustrated in Figure 3f, compared to TensorFlow. In summary, these findings highlight Orion’s superiority over

LLM-based DL fuzzers in specific versions of TensorFlow and PyTorch, emphasizing its ability to excel in the detection

of crash vulnerabilities and the distinct nature of vulnerabilities detected by each tool.

AtlasFuzz and Orion both use historical data to guide their corner case generator for test case generation. Compared

to AtlasFuzz, Orion takes a different approach by explicitly summarizing the fuzzing patterns found in historical bug

data as heuristic rules. Instead of relying on machine learning models, Orion implements symbolic methods to generate

test programs based on these summarized patterns. This means that Orion uses predefined rules and logic to create

test inputs that have a high likelihood of triggering bugs, without explicitly learning from the historical data in the

same way as AtlasFuzz. Although both AtlasFuzz and Orion use historical bug data, they differ in how they process and

utilize this information to generate test inputs for fuzzing. AtlasFuzz relies on machine learning to implicitly learn

bug-triggering patterns, while Orion uses symbolic methods to explicitly summarize these patterns as heuristic rules

for test program generation.
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Table 7. Detection effectiveness of Orion versus DocTer with Violating Inputs(VI).

Tools 2.3.0 2.4.0 1.7.0 1.8.0

DocTer(VI) 65 55 35 20

Orion 99 137 38 34

Table 8. Comparison of Orion with the LLM-based DL fuzzers.

Tool TensorFlow PyTorch

TitanFuzz 22 30

AtlasFuzz 22 38

Orion 25 45

Improvement 13.63% 18.42%

Answer to RQ1: Orion covers more APIs than the selected baselines as Orion considers both end-user and

developer APIs. In terms of developer APIs, Orion can detect 117% and 100 more vulnerabilities compared to its

FreeFuzz extension. In terms of end-user APIs and compared to DeepRel, Orion can detect 45.58%, 23.4%, and 90% on

TensorFlow 2.3.0, 2.4.0, and PyTorch 1.7.0, respectively. Regarding LLM-based DL fuzzers, Orion can detect 13.63%

and 18.42% more vulnerabilities on TensorFlow and PyTorch releases.

5.2 RQ2: Performance in Detecting New and Known Vulnerabilities

Table 9 presents statistics on newly detected vulnerabilities by Orion in the latest releases of TensorFlow and PyTorch.

In total, Orion reports 135 vulnerabilities, 76 of which have already been confirmed by library developers, and 69 of

them are new vulnerabilities. Since we report the vulnerabilities on the most recent releases for each library, at the time

of writing this paper, merely seven of them have been fixed. The number of reported vulnerabilities in TensorFlow

is higher than in PyTorch since the number of tested APIs in TensorFlow is higher than in PyTorch. In addition, the

number of confirmed vulnerabilities within the TensorFlow library is higher since TensorFlow developers are more

active in triaging the reported vulnerabilities.

Figure 4a illustrates an example of a segmentation fault, which is one of the vulnerabilities detected by Orion in

PyTorch. This vulnerability arises due to a misalignment in the input tensors for torch.lu_unpack. The highlighted

syntax in the figure highlights this misalignment, as revealed by the rules employed in the Guided Input Generation

process. To put it simply, the ranks of the first and second tensors should be identical. Orion derives its fuzzer generator

from these mismatch rules, which are constructed based on historical vulnerabilities that share the same root cause.

Figure 4b showcases a vulnerability that Orion detected in TensorFlow. This vulnerability comes from an extremely

negative value within the parameter arg_1, leading to a segmentation fault and subsequently crashing the Python

interpreter. According to the documentation, the second parameter is expected to be a 1D tensor with a precision of 32

bits for integer values. However, the documentation lacks precision in specifying that large negative integer values are

not allowed. Orion utilizes its extreme corner case generator to detect and expose this particular vulnerability.

Figure 5 and Figure 6 illustrate the total number of vulnerabilities detected by Orion in the PyTorch and TensorFlow

libraries, respectively. In PyTorch, Integer Overflow stands out as the most frequently detected bug, accounting for 14

vulnerabilities. Following closely behind is Segfault, which emerges as the second most detected vulnerability in the
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(a) TensorFlow-2.3.0 (b) TensorFlow-2.4.0

(c) PyTorch-1.7.0 (d) PyTorch-1.8.0

(e) TensorFlow-2.10.0 (f) PyTorch-1.12.0

Fig. 3. Overlap of the number of detected bugs on TensorFlow and PyTorch releases.

PyTorch library. On the other hand, in TensorFlow, Segfault takes the lead as the most detected vulnerability type, with

21 instances recorded. This suggests a potential susceptibility to severe memory access violations or pointer errors

within the TensorFlow framework. Following Segfault, Check Failed emerges as the second most detected vulnerability,

with 12 reported instances.
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Table 9. The Number of new detected vulnerabilities. The number of detected unknown confirmed, and fixed bugs by Orion on
TensorFlow 2.13.0 and PyTorch 1.13.1 as the latest releases.

Library Scope Total Confirmed Known New(fixed)

TensorFlow Developer APIs 47 28 - 28 (0)

End-user APIs 50 21 2 19 (0)

PyTorch 38 27 5 22 (7)

Total 135 76 7 69 (7)

(a) Segmentation fault exposed by mismatch between input tensors.

(b) Segmentation fault when feeding extreme corner case tensor value.

Fig. 4. Example vulnerabilities detected by Orion.
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Fig. 5. Total number of confirmed bug types detected by Orion in PyTorch library.
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Fig. 6. Total number of confirmed bug types detected by Orion in TensorFlow library.

Figure 7 shows the mapping of root causes to the symptoms of detected vulnerabilities including new and known

ones for PyTorch and TensorFlow. In the figures, the first columns show the overall fuzzing rules, while the second

column specifies the specific corner cases utilized by the fuzzing rules for vulnerability detection. The last column

shows the symptoms of the detected vulnerability.

From Figure 7a which depicts the parallel plot for the PyTorch library, we can observe that there is a trace between

Tensor Shape Mismatch and Segfault. A segmentation fault occurs when a program tries to access memory that it does

not have permission to access, often resulting in a crash. Developers should pay close attention to ensuring that tensor

shapes are consistent throughout the API execution to avoid segmentation faults. This involves a thorough shape

validation to detect and handle shape mismatches appropriately. It is also observable that there is a trace between

Preemptive Corner Case Generator Type 1- List Corner Case Generator-Case_x to Integer Overflow. This pattern reveals

that PyTorch is vulnerable to integer overflow when parameters of type integer and list with large values are being

passed to PyTorch APIs. Integer overflow occurs when a mathematical operation results in a value that exceeds the

maximum representable value for the data type, leading to crashes.

The parallel plot in Figure 7b illustrates traces within the TensorFlow library. There is a significant connection

between Tensor Shape Mismatch and Check failed. Unlike in the PyTorch library, in TensorFlow, vulnerabilities stemming

from Tensor Shape Mismatch often manifest as Check failed issues. Additionally, there is a notable connection between

Preemptive Corner Case Generator Type 1-case_x and both Segfault and Floating Point Exception. This implies that in

TensorFlow, there vulnerabilities resulting from case_x tend to lead to Segfault and Floating Point Exceptions, unlike

PyTorch library where case_x leads to Integer Overflow.

Answer to RQ2: Orion can detect 135 vulnerabilities, of which 76 have been confirmed by library developers.

Among the confirmed vulnerabilities, 69 are unknown in the latest versions of TensorFlow and PyTorch, and 7 of

them have been already fixed by library developers. The rest are awaiting further confirmation.

5.3 RQ3: Ablation Study of Fuzzing Heuristic Rules

Table 10 illustrates the contributions of fuzzing heuristic rules to the detection of vulnerabilities in TensorFlow and

PyTorch. Overall, the rules categorized under Corner Case Input Generation demonstrate a greater impact on detecting

security vulnerabilities in TensorFlow and PyTorch releases compared to those under Guided Input Generation. This

trend can be attributed to the fact that corner case rules encompass a broader range of parameter types and vulnerable

components within the API input specifications of DL APIs. Within the Guided Input Generation category, the Tensor

Shape Mismatch rule exhibits the highest contribution, surpassing Tensor List-Indices Mismatch. This confirms that
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Fig. 7. Mapping of fuzzing heuristic rules to vulnerability symptoms.

the distribution of fuzzing heuristic rules contributed to the detected vulnerabilities by Orion is consistent with the

real-world distribution of root causes shown in Table 3. In the category of Corner Case Input Generation Rules, the case_x

and case_n emerge as the most effective in vulnerability detection within TensorFlow and PyTorch, confirming that the

trend is consistent with the real-world distribution of root causes. This is likely because the inherent implementation of

DL APIs has a weakness against zero/large/negative values. This means that when these values are provided as input to

DL APIs, the back end often fails to validate these inputs properly.

Answer to RQ3: The Corner Case Input Generation category stands out as the most effective in terms of fuzzing

heuristic rules for detecting security vulnerabilities. Among these rules, the Large Integer Argument rule emerges as

the most effective. In comparison, the Guided Input Generation category is the second most effective, with the Tensor

Shape Mismatch rule proving to be the most impactful, uncovering a total of 5 vulnerabilities.
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Table 10. Contribution of Orion’s fuzzing heuristics rules on detecting vulnerabilities that are confirmed by library developers
including known and new instances in TensorFlow v2.13.0 and PyTorch v1.13.1.

Guided Input Generation PyTorch TensorFlow

Tensor Shape Mismatch 4 1

Tensor List-Indices Mismatch - 3

Corner Cases - -

Case_x 16 31

Case_n 7 5

Case_none - 5

Case_nan - 2

Case_noa - 1

Case_mt - 1

Overall 27 49

6 THREATS TO VALIDITY

Internal validity. The internal validity mainly concerns whether the implementation of the tool is correct or not.

To reduce such a threat, we did a code review in multiple rounds to make sure the rules were working as expected.

Regarding the existing fuzzing frameworks, we did not modify their implementation and we use them directly to

compare them with Orion and we use their default settings for comparison.

External validity. For this study, the external validity is on the generalizability of Orion on different DL libraries. To

reduce this threat, we used two popular and widely used DL libraries including TensorFlow and PyTorch. Even though

both of them use tensor-level operations and create dynamic computation graphs for DL training and testing, they

have different back-end implementations. This diversity increases the validity of rules equipped with Orion. Unlike

existing works which only cover end-user public APIs used only by end-users of DL libraries, we also collected dynamic

execution information of developer APIs used specifically by library developers. In the future, we will extend Orion to

more DL libraries. We also evaluate the effectiveness of Orion in a wide range of TensorFlow releases, including the

latest and earlier releases. We also assessed the effectiveness of Orion on traditional and LLM-based DL fuzzers.

Construct validity. The main concern regarding construct validity is the evaluation criteria used for the comparison

of different tools or techniques. To reduce such threats, we use four metrics for the comparison, following existing

work [53, 55]. In the future, more metrics will be explored.

7 RELATEDWORK

7.1 History Driven Fuzzing

History-driven fuzz testing is a testing approach [13, 40, 62, 64] that takes advantage of historical data, typically in

the form of previously discovered bugs or vulnerabilities, to guide the generation of test input. Instead of randomly

generating inputs, history-driven fuzz testing uses insights gained from past bugs to inform the creation of new test

cases that are more likely to trigger similar issues.

Zhao et al. [64] proposed one of the latest history-driven fuzzers called JavaTailor, a novel method for generating

diverse and effective test programs for Java Virtual Machine (JVM) implementations. Unlike existing techniques, which

mainly focus on minor syntactic or semantic mutations, JavaTailor synthesizes test programs by integrating ingredients
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extracted from historical bug-revealing test programs. Experimental results on popular JVM implementations, HotSpot

and OpenJ9, demonstrate that JavaTailor outperforms existing techniques, achieving higher JVM code coverage and

detecting more unique inconsistencies. Additionally, JavaTailor has identified 10 previously unknown bugs, 6 of which

have been confirmed and fixed by developers. Zhang et al. [62] proposed DeltaFuzz, a fuzz testing method guided by

historical version information. DeltaFuzz analyzes differences between current and previous versions to locate change

points and performs change impact analysis to identify affected basic blocks. Using a genetic algorithm, it iteratively

generates new test cases based on execution traces. Experiments on six open-source projects show that DeltaFuzz

outperforms existing tools (AFLGo, AFLFast, and AFL), reducing the time to reach targets by 20. 59%, 30. 05% and 32.

61%, respectively. Lyu et al. [40] proposed the Probabilistic Byte Orientation Model (PBOM), which captures byte-level

mutation strategies from both intra- and inter-trial history. By reusing partial-path constraint solutions from previous

mutation strategies, PBOM effectively triggers unique paths and crashes. Building on this model, they introduce EMS, a

history-driven mutation framework. EMS uses PBOM as a mutation operator to probabilistically determine the optimal

mutation byte values based on input data. They evaluated EMS against state-of-the-art fuzzers, including AFL, QSYM,

MOPT, MOPT-dict, EcoFuzz, and AFL++, in nine real-world programs. The experimental results demonstrate that

EMS discovers up to 4.91 times more unique vulnerabilities than the baseline and achieves greater line coverage than

other fuzzers in most programs. Chen et al. [13] proposed HiCOND, a novel approach for generating test programs

in compiler testing. HiCOND leverages historical data to diversify test configurations, to produce bug-revealing and

diverse test programs. By inferring ranges for test configuration options from historical data and employing particle

swarm optimization, HiCOND generates effective test programs. The experimental results on GCC and LLVM show

that HiCOND detects significantly more bugs compared to existing methods, with detection rates up to 145% higher.

Additionally, HiCOND successfully detected 11 bugs in a practical evaluation at a global IT company.

7.2 Fuzzing DL compilers

Recently, many researchers have been attracted to the research of DL compilers [36, 37, 46]. Hence, high-performance

computing is essential in DL application development. Often, DL models are compiled and optimized based on specific

platforms for safety-critical application domains.

One of the first approaches to DL compiler testing was proposed by [46] who proposed TVMFuzz as a proof-of-

concept application of their root cause categorization of bugs in DL compilers. TVMfuzz generates new tests based on

TVM’s original test suite and uncovered 8 bugs that the original suite missed.

Liu et al. [37] proposed TZer, a functional tensor compiler fuzzer that incorporates coverage guidance and utilizes a

combined approach of IR (Intermediate Representation) and pass mutation. Tzer focuses on the low-level Intermediate

Representation (IR) in TVM, employing both general-purpose and tensor-compiler-specific mutators driven by coverage

feedback to create diverse and evolving IR mutations. Moreover, Tzer includes pass mutation along with IR mutation,

utilizing the various optimization passes of tensor compilers to improve fuzzing efficiency. Experimental results show

that Tzer greatly surpasses current fuzzing techniques for tensor compiler testing, achieving 75% higher coverage and

producing 50% more valuable tests compared to the next best method.

NNSmith [36] is one of the most recent DL compiler fuzzers proposed in the literature. NNSmith proposed testing

DL compilers (such as TVM, TensorRT, ONNXRuntime) focusing on finding bugs within the compilers that optimize

DNN models. It uses a new fuzz testing approach involving generating diverse DNN models, gradient-based search to

avoid floating-point exceptional values and differential testing.
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Both NNSmith and Orion are fuzz-testing tools aimed at improving the reliability of DL libraries. However, they

target different aspects and components within the DL ecosystem, and their methodologies, goals, and results differ

significantly. In terms of goals, Orion is an API-level fuzz testing tool that primarily targets DL libraries like PyTorch

and TensorFlow, focusing on both end-user and developer APIs. The primary objective of Orion is to improve fuzzing

by combining guided test input generation with corner-case test inputs based on fuzzing heuristic rules derived from

historical vulnerabilities. On the other hand, NNSmith focuses on testing DL compilers such as TVM, TensorRT, and

ONNXRuntime. The primary objective of NNSmith is generating diverse DNN models, gradient-based search to avoid

floating-point exceptional values and differential testing.

In terms of methodology, Orion proposes Guided Input Generation which Combines heuristic rules from historical

vulnerability analysis to guide test generation. Another primary component of Orion is an empirical study in which it

analyzes 376 vulnerabilities to construct fuzzing heuristic rules. Another important and key technology in Orion is

its seed collection in which it collects test inputs for both developer APIs and end-user APIs. In contrast, NNSmith’s

primary component is the diverse model generation which uses lightweight operator specifications to generate diverse

and valid DNN models. Additionally, NNSmith ensures that model inputs avoid floating-point exceptional values. Also,

it compares outputs from different compilers to identify discrepancies and potential bugs.

In terms of impact, Orion could report 135 vulnerabilities in TensorFlow and PyTorch; 76 were confirmed by

developers, with 69 previously unknown. Compared to other tools, Orion detected significantly more vulnerabilities

than DeepRel and AtlasFuzz for end-user APIs and substantially outperformed FreeFuzz for developer APIs. Conversely,

NNSmith Identified 72 new bugs across TVM, TensorRT, ONNXRuntime, and PyTorch. Among them, 58 bugs were

confirmed and 51 were fixed by maintainers.

In conclusion, Orion offers a robust approach to fuzzing DL libraries with a focus on comprehensive API testing

and leveraging historical vulnerability data. NNSmith, on the other hand, innovates in the domain of DL compilers,

providing a unique method for uncovering compiler-specific bugs through model diversity and differential testing.

7.3 Testing DL libraries

Deep learning libraries have been widely used to assist users in Deep Neural Networks (DNNs) training and prediction

tasks [27] such as image classification [3, 10, 12, 32, 45, 50, 58], natural language processing [17, 26, 31, 35, 38, 41, 42, 48],

and software engineering [5, 14, 24, 56, 57].

Researchers have conducted numerous research studies [2, 7, 15, 18, 28, 43, 44, 52, 59, 63, 65] for testing DL libraries.

One of the first steps toward testing DL libraries is the framework proposed by [44] which is a new approach that

focuses on finding and localizing bugs in deep learning (DL) software libraries. It addresses the challenge of testing

DL libraries by performing cross-implementation inconsistency checking to detect bugs and leveraging anomaly

propagation tracking and analysis to localize the faulty functions that cause the bugs. LEMON [52] extends CRADLE by

proposing a mutation-based framework where It designs a series of mutation rules for DL models to explore different

invoking sequences of library code and hard-to-trigger behaviors. Another line of research is API-level testing of DL

libraries [21, 34, 53, 55] where each API is considered a subject for fuzzing based on a set of predefined or random

mutation rules. For example, DocTer [55] designed to analyze API documentation to extract deep learning (DL)-specific

input constraints for DL API functions. FreeFuzz [53] instrumented DL API calls from different sources and performed

instrumentation to trace dynamic execution information of DL APIs. Then these instruments were used for random

fuzzing, where type and value mutations were applied. One limitation of FreeFuzz is that it does not consider the

relational property of APIs that have similar names and parameter signatures. DeepRel [21] further extended FreeFuzz
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to infer potential API relations based on API syntax and semantic information, synthesizes test programs for invoking

these relational APIs, and performs fuzzing to find inconsistencies and bugs. A recently proposed fuzzer called SkipFuzz

[34] uses active learning to infer the input constraints of each API function and generate valid inputs. The active learner

queries a test executor for feedback, which is used to refine hypotheses about the input constraints.

Our work differs from existing DL fuzzers in several key aspects. FreeFuzz [53] and DeepRel [21] adopt approaches

that involve generating random test inputs for API-level testing of TensorFlow and PyTorch. DocTer [55], on the other

hand, focuses on extracting a set of input generation constraints from API reference documentation. In the context of

LLM-based DL fuzzers, such as TitanFuzz [19] and AtlasFuzz [20], the emphasis is on leveraging LLMs to model API

usage sequences and context information for API-level fuzzing which mostly expose general DL bugs, not security

vulnerabilities. In contrast, our approach is centered on the construction of fuzzing heuristic rules based on historical

security vulnerabilities. These rules are designed to mimic real-world corner cases test inputs when fuzzing DL APIs,

thereby discovering critical vulnerabilities within the backend implementation of TensorFlow and PyTorch. Additionally,

Orion employs guided input generation rules to model correlations between input arguments from DL APIs, addressing

one of the main root causes of security vulnerabilities in DL libraries.

8 CONCLUSION

In this paper, we proposed Orion, the first step toward building a semi-automated fuzzing framework based on a

set of fuzzing heuristics rules built on top of the history security vulnerabilities in TensorFlow and PyTorch. More

specifically, Orion performs test input generation for fuzzing via mining historical data from open source, including

API documentation, public repositories on GitHub, and library tests. We built the fuzzing heuristics rules based on

33 unique root causes of security vulnerabilities. We extensively evaluated Orion versus three traditional DL fuzzers,

including FreeFuzz, DeepRel, and DocTer, as well as two state-of-the-art LLM-based fuzzers on more than 5k end-user

and developer DL APIs. Orion reports 135 vulnerabilities, 76 of which are confirmed by the community of DL library

developers. Among the 76 confirmed vulnerabilities, 69 are new vulnerabilities, 7 of them have been fixed after we

reported them and the left are awaiting confirmation. In terms of end-user APIs and compared to most recent traditional

DL fuzzers, i.e., DeepRel, Orion detects 45.58% and 90% more vulnerabilities, respectively. In comparison with the

state-of-the-art LLM-based fuzzer, e.g., AtlasFuzz, Orion detects 13.63% and 18.42% more vulnerabilities on TensorFlow

and PyTorch.

9 DATA AVAILABILITY

We share the source code of Orion, the bug list, and data in [1].
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