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Abstract—Mobile apps often rely heavily on standard API
frameworks and libraries. However, learning to use those APIs
is often challenging due to the fast-changing nature of API
frameworks and the insufficiency of documentation and code
examples. This paper introduces DroidAssist, a recommendation
tool for API usages of Android mobile apps. The core of
DroidAssist is HAPI, a statistical, generative model of API usages
based on Hidden Markov Model. With HAPIs trained from
existing mobile apps, DroidAssist could perform code completion
for method calls. It can also check existing call sequences to detect
and repair suspicious (i.e. unpopular) API usages.

Keywords—Statistical code completion, API usage.

I. INTRODUCTION

Due to the fierce competition, mobile apps often have very
short time-to-market and upgrade cycles. Thus, to reduce de-
velopment time, app developers extensively reuse API applica-
tion frameworks and libraries (e.g. Android, iOS frameworks,
Java APIs). For example, an Android app might have up to
42% of its external dependencies to Android APIs and 68%
to Java APIs [1].

Learning and using APIs is challenging due to several
reasons. First, a framework often consists large numbers of
API functions and types. For example, Android application
framework contains over 3,400 classes and 35,000 methods,
clustered in more than 250 packages [2]. Moreover, typical API
usage scenarios often include several API elements and follow
special rules, e.g. for pre- and post-conditions or for control
and data flows [3]–[5]. Unfortunately, API documentation
is often insufficient. For example, the Javadoc of a class
often contains only descriptions of its methods and rarely has
code examples on the usage of its objects and methods [6].
Documentation and code examples for API usages involving
several objects are often non-existed.

The situation is even more difficult for learning APIs of
mobile frameworks. First, due to the fast development of
mobile devices and the strong competition between vendors,
those frameworks are often upgraded quickly and include very
large changes. For example, 17 major versions of Android
framework have been released within five years, making nearly
100,000 changes to its API methods [2]. More severely, mobile
apps are often closed-source, i.e. their source code is not
publicly available. Thus, finding and learning code examples
from existing mobile apps projects would be difficult.

To address this problem, we develop DroidAssist, a rec-
ommending tool for API usages. When a developer is writing

code, DroidAssist can analyze the code being written and
recommend (and fill-in on request) the next or missing API
method calls. To help the developer makes more effective
choices, those calls are ranked based on their likelihoods
of appearance in the existing code context. DroidAssist can
also detect suspicious API usages in existing code (i.e. ones
rarely/unlikely to be used) and repair them with more probable
usages. More details will be discussed in the next sections. The
tool and video demonstration are available at our website 1.

II. USAGE SCENARIOS

DroidAssist is released as a plugin of Android Studio [7],
the standard IDE for Android apps development. After instal-
lation, it is incorporated with Android Studio and users can
invoke it directly from the current editing view (for method
call recommendation) or via the menu (for method sequence
validation). This section presents its two usage examples.

A. Recommending Next Method Call

Assume that the developer wants to write code for a
database transaction. She has created a database query that
return a Cursor object and made a call to begin the transaction.
However, she forgets how to use the returned Cursor object
properly. She invokes the built-in code completion engine, but
it just lists all methods that can be called on the Cursor, thus
does not help her to make an appropriate selection.

Now, with DroidAssist, the developer will have better rec-
ommendations. Figure 1 shows a screenshot of Android Studio
with DroidAssist invoked (via the keystroke Ctrl + Shift + Space)
for the current editing code. As seen, DroidAssist displays a
ranked list of methods that can be called for the Cursor object.
Each method has a score represents the probability of how
likely it might be called in the given current context of the
object and other interacting objects. In this example, method
moveToFirst has the highest score of 30.52%. If the developer
chooses it, it will be filled in the current position in the editor.

DroidAssist uses code context including the current method
calls to infer and recommend the next call. For example, in
Figure 2, object db already has three method calls: beginTrans-
action, insert, and setTransactionSuccessful. Thus, DroidAssist
predicts that the next method call will be endTransaction with a
probability of 61.38%, which is the highest among all available
methods for this object.

1http://useal.cs.usu.edu/droidassist/

2015 30th IEEE/ACM International Conference on Automated Software Engineering

978-1-5090-0025-8/15 $31.00 © 2015 IEEE

DOI 10.1109/ASE.2015.109

795



Fig. 1: Method Call Recommendation by DroidAssist

Fig. 2: Call recommendation for object db

DroidAssist recommendations are more accurate with more
context information. For example, if the method sequence
for object db has only two calls: beginTransaction and insert,
setTransactionSuccessful has a probability of 15.11%. However,
if endTransaction is already added, probability of setTransaction-
Successful increases dramatically to 65.65% (see Figure 3).

B. Analyzing Method Sequence

DroidAssist can analyze a given method sequence in ex-
isting code report. If it is a suspicious API usages (i.e. is
rarely used or unlikely to be used), DroidAssist can offer
fixes with more probable method sequences. Figure 4 shows a
code example involving a MediaRecorder object. After writing
code, the developer wants to check if his usage is acceptable.
To invoke DroidAssist for that task, she moves to a line of
code containing mediaRecorder variable, opens Analyze menu
and selects Analyze API Call Sequence.

DroidAssist then will analyze the API usage for that object.
Figure 5 shows the analyzed result. The left of the dialog shows

the original method sequence. The right of the dialog shows
the suggestions for repair. If DroidAssist detects a suspicious
method sequence, it will suggest three actions: replace, add, or
delete a method call, to make the usage more probable. In the
example, DroidAssist detects that calling setAudioChannels at
the beginning might not be a proper usage. It recommends to
replace that method by setAudioSource. If the user choose option
Replace and press Apply, DroidAssist will repair the API call
sequence in the code editor by replacing setAudioChannels with
setAudioSource.

III. DESIGN AND IMPLEMENTATION

This section briefly discusses the key points on design
and implementation of DroidAssist. We will start with HAPI
(“Hidden Markov model of API usages”), the statistical, gen-
erative model used by DroidAssist to (compactly) represent
the API usages. Then we introduce the training processes for
HAPI from the API usages in existing software code. Finally,
we discuss how DroidAssist uses the trained HAPIs to perform
its two aforementioned functions.

A. HAPI - Hidden Markov Model of API Usages

Let us introduce HAPI via an example. Figure 6 illustrates
the usage of a MediaRecorder object in Android API as a state
diagram reproduced from Android Developer website2. As
seen in the figure, this state diagram is a finite state machine
in which each node (drawn as a rounded rectangle) represents
an internal state of the MediaRecorder object and each edge
(drawn as an arrow) represents the change of its state when a
method (drawn as the label of the edge) is called.

We learn from the state diagram that a MediaRecorder object
has seven states during its lifetime. It is at one state at a time
and can change to another state if a method is called. For exam-
ple, as after being created, it is in Initial state. If setAudioSource

2http://developer.android.com/reference/android/media/MediaRecorder.html
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Fig. 3: API call recommendation before and after calling endTransaction method

public void mediaRecorderExample(String fileName) {
mediaRecorder.setAudioChannels(2);
mediaRecorder.setOutputFormat(MediaRecorder.OutputFormat.THREE GPP);
mediaRecorder.setAudioEncoder(MediaRecorder.AudioEncoder.AMR NB);
mediaRecorder.setOutputFile(fileName);
try {

mediaRecorder.prepare();
} catch (IOException e) {

e.printStackTrace();
}
...

}

Fig. 4: Source code examples of using MediaRecorder objects

Fig. 5: Repair suggestion for suspicious usage

or setVideoSource is called, it changes to Initialized state. Then,
it will change from Initialized state to DataSourceConfigured
state if we call setOutputFormat. However, at any time, if reset
is called, the object will come back to its Initial state.

State diagrams are useful to understand API usages. For
example, we could infer from Figure 6 the following method
call sequence to perform an audio recording task.

setAudioSource(...)
setOutputFormat(...)
setAudioEncoder(...)
setOutputFile(...)
prepare()
start()
stop()
release()

Unfortunately, API documentation often does not provide

Error Initial

Released

Recording

Prepared

Initialized

DataSource
Configured

reset()

reset()

setAudioSource()
setVideoSource()

setAudioSource()
setVideoSource()

setOutputFormat()

setAudioEncoder()
setVideoEncoder()

setOutputFile()
setVideoSize()

setVideoFrameRate()
setPreviewDisplay()

reset()
reset()

prepare()

release()

start()

reset()/
stop()

Error occurs or 
an invalid call

Fig. 6: State Diagram of MediaRecorder object

state diagrams for most of API objects. In addition, current
code completion engines like the one built-in in Android
Studio do not utilize state diagrams in their recommendations.

HAPI is designed to take the usefulness of state diagrams
and address their aforementioned weakness. In essential, a
HAPI is a probabilistic state diagram, i.e. its nodes and edges
associate with probabilities of invocations and transitions.
More importantly, its structure and probabilistic parameters can
be learned, i.e. estimated from data.

Figure 7 illustrates the HAPI learned by DroidAssist on
the usages of MediaRecorder. As seen in the figure, each node
of the HAPI represents a state of the object. But different
from the state diagram in Figure 6, each state of a HAPI
has a probability π for being the starting state in a method
sequence. It also has a distribution specifying the probability of
calling a particular method and another distribution specifying
the probability of changing to another state. (It should be
noted that, to simplify the drawing, we only show methods and
transition edges with significant probabilities in the figure.)

As modeled by the HAPI, a MediaRecorder object starts
in state (1) with probability of 83%. In this state, method
setAudioSource is called with a probability of 82% and the
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Fig. 7: The HAPI model to represent usage patterns of Medi-
aRecorder object

object can change to state (2) with a probability of 52%. In
that state, setOutputFormat is called with a probability of 99%.
Technically, a HAPI is a Hidden Markov Model [8] on which
we can compute and compare the probabilities of any given
method sequences. For example, the sequence setAudioSource,
setOutputFormat, setAudioEncoder would have higher probability
than the sequence setAudioSource, setOutputFormat, start.

B. Design Overview

Figure 8 shows the design overview of DroidAssist. It
has five major components including two modules to extract
API usages (represented as graph-based object usage models
- GROUM [3]) from source code and bytecode, a module
to extract method call sequences from those usage models, a
module to train HAPIs from those sequences, and two modules
that use the trained HAPIs to recommend next method calls
or check/repair an existing method sequence. Let us describe
those modules in more details.

1) GROUM Builder: DroidAssist uses GROUM (Graph-
based Object Usage Model) [3], developed by the fourth author
and his colleagues to represent the raw API usages in source
code and bytecode. Thus, to collect training data, DroidAssist
has a module to extract GROUMs from bytecode of existing
Android apps and a similar module to extract GROUMs from
the code being written, which are used for its two tasks of
method call recommendation and validation. Figure 9 shows
an example of GROUM built for the code snippet in Figure 2.

As seen, there are three kind of nodes in GROUM:
object nodes represent objects and variables, method nodes
represent method invocations, and control nodes represent
control statements. There are two kinds of edges: data edges
represent data dependency between object nodes and method
nodes, while control edges represent temporal order between
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Fig. 8: Design Overview of DroidAssist
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Fig. 9: A GROUM example

method/control nodes. Due to space constraints, we do not
present the GROUM extraction algorithms here. They can be
found at [3] and [9].

2) API Method Sequence Extractor: Because HAPI is
designed based on Hidden Markov Model, it works on se-
quences, not graphs. Thus, DroidAssist has a module named
API Sequence Extractor to extract sequences of method calls
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from the GROUMs. For a given GROUM, this module simply
traverses all its paths and extracts the method calls along those
paths. However, to ensure the extracted method sequences are
meaningful, it only keeps the sequences involving the same
API objects (i.e. have data dependency). More details can be
found at [9].

3) HAPI Learner: This module is responsible for training
HAPI models from the extracted method sequences. It first
sorts those method sequences by the involving API objects.
For example, all method sequences involving the usages of
a single MediaRecorder object are grouped together and then
will be used to train the HAPI representing the usage of a
single MediaRecorder object. Sequences involving the usages of
a Scanner and a StringBuilder object are grouped and used to
train the HAPI for those two objects.

DroidAssist uses a modified version of Baum-Welch algo-
rithm to train a HAPI [9]. In the training process, it figures out
the optimal number of internal state of the HAPI and estimates
all probabilities involving the HAPI’s states (i.e. how likely a
state is selected as the starting state, how likely the object
changes from a state to another) and method calls (i.e. how
likely a method is called when the object is in a state). Please
refer to [9] for more details of this algorithm.

4) Method Call Recommender: This module provides the
recommendations of the next method call for the currently
editing code (and performs the completion task if requested).
Its input is a collection of method sequences provided by API
Sequence Extractor along with the position of the missing call.
It places every available method m at the missing position and
computes the probability of the newly created sequence based
on the HAPI of the API objects involving that sequence. It then
combines those probabilities into a final score for method m.
All methods then are ranked by those scores and proposed to
the developer, as seen in Figure 2.

5) Method Sequence Analyzer: This module evaluates an
API call sequence. Its input is a method sequence for one or
more API objects. This module uses the corresponding HAPI
to compute the probability of this sequence. If that probability
is smaller than a threshold, the sequence is considered to be
suspicious. If that happens, the Method Sequence Analyzer
will explore different modifications on the sequence (i.e. by
adding/replacing/removing a method call) to find more proba-
ble sequences and offers them for repair.

The threshold is computed based on the distribution of
probabilities of all unique method sequences used for training
the HAPI. Based on our experiment, we currently use the 75%
percentile as the threshold. That means, if the HAPI is trained
with 100 unique sequences, and 75 of them have probabilities
smaller than 0.1, this value is chosen as the threshold.

IV. RELATED WORK

Several tools for API usage recommendation have been
developed. Grapacc [4] is the most similar to DroidAssist.
However, it uses a graph-based pattern approach. That is,
it mines, stores, and recommends API usage patterns as
frequent graph-based models (GROUM [3]). As such, it can
recommend only popular API usages. In contrast, DroidAssist
uses a sequence-based, generative approach. Although it uses

GROUM to extract API usages, it uses method sequences to
train the HAPIs. Because HAPI is a generative model, it can
model and recommend method sequences that are non-frequent
or even unseen in training data.

SLANG [10] uses n-grams to model API usages and
suggest the next API call. Thus, the context of a method
call is a window of n − 1 previous calls. In contrast, HAPI
in DroidAssist can model method sequences of much longer
length, i.e. can capture more context information. GraLan [11]
models API usage by a graph-based statistical language model.
Although graphs are better than sequences in capturing context
information, the number of sub-graphs can grow exponentially.
That means, training sequence-based models would be more
time- and space-efficient.

Bruch et al. [12] proposed three techniques for code
completion: 1) FreqCCS recommends the most frequently used
method call, 2) ArCCS mines associate rules and suggests
methods that often occur together and 3) BMN uses k-nearest-
neighbor algorithm to find the best matched method sequences.
That means, the context for a method call is an empty set, an
another call, or un-ordered set of method calls. In comparison,
context in DroidAssist contains much longer call sequences,
thus provide more information.

Precise [13] mines existing code bases and builds a pa-
rameter usage database. Upon request, it queries the database
and recommends API parameters. Graphite [14] allows library
developers to introduce interactive and highly-specialized code
generation interfaces that could interact with users and gener-
ates appropriate source code.

Other approaches have been proposed to improve code
completion tasks. Robbes et al. [15] improves code completion
with program history. Hou and Pletcher [16] found that ranking
method calls by frequency of past use is effective and propose
new strategies for organizing APIs in the code completion pop
up. Hill and Rideout [17] matches the fragment under editing
with small similar-structure code segments that frequently
exist in large software projects. McMillan et al. [18] and
Subramanian et al. [19] use API documentation to suggest
source code examples to developers. Holmes and Murphy [20]
describe an approach for locating relevant code examples based
on heuristically matching with the structure of the code under
editing. MAPO [21] is a code recommendation tool which
mines API usage patterns and recommends associated code
examples. Codota [22] is a code example recommendation
plugin on Android Studio. The function of Codota is similar
to MAPO as it only recommends Android code examples.

V. CONCLUSION

This paper introduces DroidAssist, a recommendation tool
for API usages of Android mobile apps. DroidAssist uses
HAPI, a statistical, generative model designed based on Hidden
Markov Model to model API usages. It can extract API usages
(as graphs and sequences of method calls) from source code
and bytecode to train its HAPI models and build the code
context for its recommendation tasks. Using the HAPIs trained
from existing apps, DroidAssist can perform code completion
for method calls. It can also check existing call sequences to
detect and repair suspicious (i.e. unpopular) API usages.
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