
Tool Support for Analyzing Mobile App Reviews

Phong Minh Vu, Hung Viet Pham, Tam The Nguyen, Tung Thanh Nguyen
Computer Science Department

Utah State University

{phong.vu, hung.pham, tam.nguyen}@aggiemail.usu.edu

tung.nguyen@usu.edu

Abstract—Mobile app reviews often contain useful user opin-
ions for app developers. However, manual analysis of those
reviews is challenging due to their large volume and noisy-
nature. This paper introduces MARK, a supporting tool for
review analysis of mobile apps. With MARK, an analyst can
describe her interests of one or more apps via a set of keywords.
MARK then lists the reviews most relevant to those keywords
for further analyses. It can also draw the trends over time of
the selected keywords, which might help the analyst to detect
sudden changes in the related user reviews. To help the analyst
describe her interests more effectively, MARK can automatically
extract and rank the keywords by their associations with negative
reviews, divide a large set of keywords into more cohesive sub-
groups, or expand a small set into a broader one.

Keywords—App Review, Opinion Mining, Keyword

I. INTRODUCTION

Online reviews of mobile apps often contain useful user
opinions, e.g. complaints or suggestions, which app developers
can address to improve user satisfaction. However, analyzing
those reviews manually for such opinions is challenging due
to their large volume and noisy-nature. For example, a popular
app like Facebook often gets thousands of reviews each day.
In addition, a prior research reports that more than 60% of
reviews do not contain useful opinions [1].

We have developed MARK (Mining and Analyzing Reviews
by Keywords), a semi-automated tool to support the analysis
of apps’ reviews. As its fullname suggests, MARK operates
based on keywords. That is, when using MARK, an analyst
can describes his interests in one or more apps via a set of
keywords. MARK then lists the reviews most relevant to those
keywords for further analysis. It can also draw the trends over
time of those selected keywords, which might help the analyst
to detect sudden changes in the related user reviews.

Figure 1 illustrates MARK’s internal architecture and pro-
cessing pipeline. First, it crawls raw reviews from designated
app stores1 and only keeps reviews written in English. Then
it extracts keywords from those reviews and pre-processes
them. Because apps reviews often have a lot of typos, slangs,
acronyms, and abbreviations, MARK stems and sanitizes those
keywords with customized stemming rules and dictionaries.
It also learns vector-based representation of keywords using
word2vec [2], which will be used to calculate word similarity.
The resulted keyword data is stored in a common database for
future analysis tasks.

1The current version of MARK works with Google Play. We plan to connect
other online app stores in the future.

The next three components of MARK are for keyword
recommendation which help analysts describe their interests
more effectively. MARK ranks keywords based on review
ratings, i.e. top-ranked keywords are the ones occur most
frequently in negative reviews. With that ranking, the analysts
can focus on the issues the users complain or dislike. If the
analyst already has a few keywords to start with, MARK can
recommend additional similar keywords. In contrast, if the
chosen keywords are too broad, MARK can narrow them down
by dividing them into smaller, more cohesive subsets. Both
of these functions are based on the semantic similarity of the
keywords, which MARK calculates based on their vector-based
representation learned with word2vec.

MARK’s last two functions work when a set of keywords is
chosen. Using the standard Vector Space Model and tf.idf term
weighting scheme [3], MARK computes the relevance between
each review and the chosen keyword set before reporting to
analysts the most relevant reviews. It can also compute the
trends of those keywords overtime (based on their occurrence
frequencies in the reviews and their simple moving averages).
MARK plots those trends and marks the sudden changes,
which often indicate when users report wide-spread errors or
major issues [4].

MARK is developed and deployed as a web-based tool.
Readers interested in MARK are encouraged to access it online
at http://useal.cs.usu.edu/mark and send feedback to ususeal@
gmail.com. The full technical details of MARK are presented
in [5]. In the rest of this paper, we will demonstrate the
usefulness of MARK via two usage scenarios.

II. RUNNING SCENARIOS

A. Facebook Messenger

Let us demonstrate MARK via the following example.
Assume that we interested in negative user opinions about
Facebook Messenger (one of the most popular apps on Google
Play with hundreds of millions of users). Figure 2 shows the
Launching screen, where we could choose this app for our
analysis. To do that, we type in the word Messenger and apps
with names most similar to that word are listed in the App
Selection screen shown in Figure 3. This screen also shows
basic information about the apps such as description, average
ratings, common keywords, etc. We then can click on the link
of Facebook Messenger to add it to the list of selected apps
showed in the right and click on the Analyze button to go the
next screen, the General Analyses screen.

Initially, we are interested in all aspects of this app that get
negative opinions. Thus, MARK lists all potential keywords

2015 30th IEEE/ACM International Conference on Automated Software Engineering

978-1-5090-0025-8/15 $31.00 © 2015 IEEE

DOI 10.1109/ASE.2015.101

789

frezzing

freezingelexir

elixir

... ...

downlod download

Common Words mapper

English

English

Spanish ...

Non-English Reviews Filter

Freezing � V-ing
Elixir � Noun

... � ...

POS tagger

Freezing � freeze
Forceclosing � forceclose

... � ...

Stemmer & corrector

Database

Word2Vec

Keyword Extractor Keyword Analyzer

App reviews Vectors

Keywords Expanding

Keywords Ranking

Keywords Dividing

Reviews Searching

Trends Discovering

Selected keywords

Further Analyzers
And Visualization

Keywords Set

Fig. 1: System overview

Fig. 2: Launching screen for app selection

Fig. 3: Selecting Facebook Messenger for analysis

from raw reviews of Facebook Messenger and ranks those
keywords based on their associations with negative ratings (e.g.
top-ranked words like update or login occur most frequent in 1
or 2-star reviews) like in Figure 4. Because the list contains
all possible keywords, to narrow down our analysis, we select
the top 100 (i.e. most negative) out of it. Figure 5 shows the
listed and selected keywords.

As seen in the figure, several selected keywords are related
and indicate a more general concern/issue. For example both
keywords crash and freeze could be used to describe the app’s
status when an “unrecoverable error” occurs. Or, battery and
drain often go together to describe the bad “energy consump-
tion” of the app. Therefore, we use the Cluster function
of MARK to divide the 100 selected keywords into smaller
groups, each potentially for a more general concern. Figure 6
shows the clustering results produced for Facebook Messenger.

This clustering task is based on Word2Vec, a distributed,
vector-based representation of words [2]. Word2Vec represents
each word in a vocabulary as a high dimensional vector
learned from a large corpus of text. Words having similar

Fig. 4: Ranked negative keywords for Facebook Messenger

Fig. 5: Selection of top 100 keywords

or related syntactic roles or semantic meanings often have
similar vectors. Thus, MARK divides a keyword set into
smaller subsets of related ones by applying K-mean [6], a
similarity-based clustering algorithm on their vectors. It should
be noted that, because K-mean algorithm initializes its clusters
randomly, the clustering results might be slightly different
between runs of the same analysis!

Browsing the clusters, we find one containing keywords
like battery and drain, i.e. possibly related to the user opinions
about “energy consumption”. We select this cluster and re-
move some keywords that seem to be non-related like data and
phone. We suspect that users might use some other keywords

790

Fig. 6: Clustered keywords for Facebook Messenger

Fig. 7: Suggested keywords for Facebook Messenger

for this topic, thus, we ask MARK to suggest more (which
is also performed based on the vector-based similarity of
keywords). Figure 7 shows the suggested keywords, containing
new ones like usage, deplete, and consumption.

Once those keywords are selected, MARK visualizes the
trends of their occurrences overtime which can be analyzed for
abnormal patterns. Figure 8 shows the trends for the keywords
related to “energy consumption”. We could see an unusual
peak in occurrences of those keywords in Feb 2015, which was
after the release of a new version of Facebook Messenger. Prior
works [1], [4] suggest that those sudden changes often occur
when a newly released version of an app contains some defects
or issues that make many users unsatisfied. To detect such
abnormalities, MARK analyzes the keyword occurrence counts
as a time-series, computes its simple moving average (SMA)
and the differences between actual counts and SMA values.
If the difference value is significant higher (e.g. two times)
than the standard deviation of those SMA values, it indicates
a sudden change in the corresponding occurrence counts.

We investigated further into this observation by asking
MARK to query its review database and to return reviews
created in the selected time (Feb 2015) which are most relevant
to the selected keywords. This querying task is based on the
standard Vector Space Model. That is, MARK applies the
tf.idf weighting scheme on the keywords and measures the
relevance between the selected keywords to a review as the
cosine similarity of their tf.idf feature vectors. To help analysts
reading the reviews more effectively, in the Review Search
screen, MARK allows users to sorts the reviews by relevance
(i.e. most related to keywords first), by time (e.g. most recent
reviews first), or by rating (e.g. most negatively rated first).
Users can also filter the listed reviews by their ratings (e.g.
showing only 1-star reviews) or by using full-text search.

Fig. 9: Reviews of keywords for ”energy consumption” in
Facebook Messenger

Excessive CPU and battery usage is leading to quickly drained battery and

overheating even when my tablet is sleeping. Uninstalling until this is fixed; it’s

killing my battery.

Fig. 10: A negative review on “energy consumption” for
Facebook Messenger

Figure 9 shows the reviews listed in the Review Search
screen. As seen, those reviews contain (mostly negative) user
opinions about the energy consumption aspect of this app.
Figure 10 lists one among them. In this review, the user
complains that this app drains his tablet’s battery and makes
it overheated. The issue is so severe that he has to uninstall
the app. According to a confirmation from a developer at
Facebook2, this problem was caused by a syncing error on
Android (the app keeps syncing between the phone and the
messaging server, thus utilizes a lot of CPU time which leads
to high power consumption and overheat). A newly update
version of Facebook Messenger has been released on February
13th to fix this problem.

B. Login issues of several messaging apps

In the previous example, we demonstrated an analysis on
Facebook Messenger. In this section, we present another analysis
on two similar apps: Whatsapp and Viber. Both of them are
mobile apps for SMS and VoIP (i.e. sending text messages
and calling). They both have a very large userbase and many
daily activities. Their functionalities are almost identical and
thus, they could be considered as direct competitors. Thus, we
wonder what are their common problems and what can we
learn from them? In this section, we will demonstrate how to
answer that question with MARK.

We start with the Launching screen and select them for
analysis. After that, we go to the Keyword Selection screen
as showed in Figure 11. In this screen, we can examine

2http://androidforums.com/threads/facebook-messenger-battery-
drain.902687/

791

Fig. 8: Trends of keywords for ”energy consumption” in Facebook Messenger

Fig. 11: Ranked negative keywords for Whatsapp and Viber

each keyword individually. For example, Figure 12 shows the
analysis for keyword activation. As seen, MARK draws the
trends of this keyword overtime, suggests related keywords,
like login and email, and also lists the relevant reviews.

A quick skim through the reviews suggests that the users
were having trouble with activating their accounts. Thus, we
wonder if this is the only problem they have, or there are
more regarding the topic of “login and authentication”. To
investigate further, we choose the keywords that might relate
to this problem. In this list, it seems like enter is the only
keyword that does not really belong to our case. After that,
we go back to the Keyword Selection screen. At this screen,
we ask MARK to suggest more keywords (e.g. see Figure 13).
We add some of them and search for the reviews. Figure 14
shows the two most relevant reviews. Much to our surprise,
users also talked about the problem of not being able to sign
in using Google email service for both apps.

In this analysis, we have discovered at least two common
problems for two mass messaging apps which made users
rather unsatisfied and frustrated. Thus, developers of these apps
or similar ones can learn about these common problems to fix
them when they happen, or prevent them in advance.

Fig. 13: Keywords suggested for “login and authentication”

Two presented examples have shown the usefulness of
our tool. For example, it can help app developers to quickly
identify users’ complaints about their apps and the severity of
such complaints (e.g. via the trends and counts of the related
keywords and reviews). Additionally, our tool can help app
developers examine multiple apps (e.g. including competitors
of their apps), identify the common problems and thus, provide
them more information to improve their apps.

III. RELATED WORK

Studies on user issue reports and feedbacks of traditional
software are popular in the literature [7]–[9]. However, to the
best of our knowledge, there are very few tools or systems that
focus on analyzing apps reviews. One of them is Wiscom [4].
It introduces several level of user reviews analysis, including
micro level (for a single review), meso level (for reviews of an
app) and macro level (for reviews of all apps in the market).
The authors do sentiment analysis of words using Linear Re-
gression Model is comparable to our keyword negative ranking
scheme but with a different intention. MARK tries to address
the impact of keyword’s concerns to users while Wiscom wants
to address the impact on sentiment of a keywords to discover
inconsistent review.

On “meso level” Wiscom uses a LDA model to analyze
topics of user reviews based on their distribution. Similarly, we
group the keywords using K-mean clustering on vector-space
representation of words, but our approach focus on exploiting
different layers of semantic meaning for words inside the
corpus, which give us a different perspective of user opinions.
To the best of our knowledge, their work is also the first
work to mention the use of timeseries on reviews for analysis,
however, their approach was to use root cause analysis based

792

Fig. 12: Ranked keywords for Whatsapp and Viber

Fig. 14: Reviews of keyword for login and authentication problems

on the observed busts in negative or positive comments, which
does not address the problems that may lie inside normal
stream of comments as ours does.

Another interesting tool is the prototype MARA developed
by Iacob et al [10]. It is designed to retrieve app feature
requests from comments using a set of linguistic rules. These
rules were manually derived from the reviews’ text. This helps
MARA analyzes feature requests and identify their common
topics. Our approach of using keywords also can be used to
find feature requests in addition to user complaints, but in
a different dimension of understanding. More over, MARK
allows users to analyze app reviews in a more comprehensive
manner, including time, rating and semantic meaning of words.

Gomez et al. [11] developed a static error-proneness
checker for app based on permissions, based on an empirical
study suggested that there are error-prone permissions reported
in user reviews. As other works, it is different from our main
purpose and approach of mining keyword from reviews.

AR-Miner [1] is another approach in extracting information
from reviews. They proposed a computational framework to
extract and rank informative reviews at sentence level. We
want to discover user’s concerns, and provided a comprehen-

sive approach to do that, while they want to find and rank
most informative reviews, so the benefit for developers is
different. Moreover, we focus on keywords level because their
distributed representations can discover more detailed semantic
meanings of user’s reviews. Our tool is the first approach to
provide a reliable way to search for relevant reviews using
keywords, which is yet to be mentioned by any prior work.

IV. CONCLUSIONS

Apps reviews analysis is a new research field in mobile
apps development. However, its impact can be very wide as the
information extracted from users reviews can be used for many
purpose, including widen the understanding of developers of
their apps, and strategic development of competitor apps. How-
ever, reading millions of reviews could be an unfeasible option
for them, thus the need of having a tool capable of analyzing
reviews has risen. In this paper, we introduce MARK, a
tool that can easily and comprehensively help developers to
understand and discover user’s concerns of chosen apps. We
have demonstrated several examples the use cases of our tool
and proved that it can find useful information from reviews
for developers and reduce their effort in the process.

793

REFERENCES

[1] N. Chen, J. Lin, S. C. H. Hoi, X. Xiao, and B. Zhang, “Ar-
miner: Mining informative reviews for developers from mobile app
marketplace,” in Proceedings of the 36th International Conference on
Software Engineering, ser. ICSE 2014. New York, NY, USA: ACM,
2014, pp. 767–778. [Online]. Available: http://doi.acm.org/10.1145/
2568225.2568263

[2] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation
of word representations in vector space,” CoRR, vol. abs/1301.3781,
2013. [Online]. Available: http://arxiv.org/abs/1301.3781

[3] C. D. Manning, P. Raghavan, and H. Schütze, Introduction
to information retrieval. Cambridge university press Cambridge,
2008, vol. 1. [Online]. Available: http://nlp.stanford.edu/IR-book/pdf/
irbookonlinereading.pdf

[4] B. Fu, J. Lin, L. Li, C. Faloutsos, J. Hong, and N. Sadeh, “Why
people hate your app: Making sense of user feedback in a mobile
app store,” in Proceedings of the 19th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, ser. KDD
’13. New York, NY, USA: ACM, 2013, pp. 1276–1284. [Online].
Available: http://doi.acm.org/10.1145/2487575.2488202

[5] P. M. Vu, T. T. Nguyen, H. V. Pham, and T. T. Nguyen, “Mining
user opinions in mobile app reviews: A keyword-based approach,”
in Proceedings of the 30th ACM/IEEE International Conference on
Automated Software Engineering. ACM, 2015.

[6] J. MacQueen et al., “Some methods for classification and analysis
of multivariate observations,” in Proceedings of the fifth Berkeley

symposium on mathematical statistics and probability, vol. 1, no. 14.
Oakland, CA, USA., 1967, pp. 281–297.

[7] A. Ko, “Mining whining in support forums with frictionary,” in CHI
’12 Extended Abstracts on Human Factors in Computing Systems,
ser. CHI EA ’12. New York, NY, USA: ACM, 2012, pp. 191–200.
[Online]. Available: http://doi.acm.org/10.1145/2212776.2212797

[8] S. Breu, R. Premraj, J. Sillito, and T. Zimmermann, “Information
needs in bug reports: Improving cooperation between developers
and users,” in Proceedings of the 2010 ACM Conference on
Computer Supported Cooperative Work, ser. CSCW ’10. New
York, NY, USA: ACM, 2010, pp. 301–310. [Online]. Available:
http://doi.acm.org/10.1145/1718918.1718973

[9] S. Mani, R. Catherine, V. S. Sinha, and A. Dubey, “Ausum:
Approach for unsupervised bug report summarization,” in Proceedings
of the ACM SIGSOFT 20th International Symposium on the
Foundations of Software Engineering, ser. FSE ’12. New York,
NY, USA: ACM, 2012, pp. 11:1–11:11. [Online]. Available:
http://doi.acm.org/10.1145/2393596.2393607

[10] C. Iacob and R. Harrison, “Retrieving and analyzing mobile apps
feature requests from online reviews,” in Proceedings of the 10th
Working Conference on Mining Software Repositories, ser. MSR
’13. Piscataway, NJ, USA: IEEE Press, 2013, pp. 41–44. [Online].
Available: http://dl.acm.org/citation.cfm?id=2487085.2487094

[11] M. Gomez, R. Rouvoy, M. Monperrus, and L. Seinturier, “A recom-
mender system of buggy app checkers for app store moderators,” Ph.D.
dissertation, Inria Lille, 2014.

794

