
Deep Learning UI Design Patterns of Mobile Apps

Tam The Nguyen1, Phong Minh Vu1, Hung Viet Pham2, Tung Thanh Nguyen1
1Auburn University, 2Utah State University

tam@auburn.edu,lenniel@auburn.edu,hv.pham.2704@gmail.com,tung@auburn.edu

ABSTRACT

User interface (UI) is one of the most important components of a

mobile app and strongly influences users’ perception of the app.

However, UI design tasks are typically manual and time-consuming.

This paper proposes a novel approach to (semi)-automate those

tasks. Our key idea is to develop and deploy advanced deep learning

models based on recurrent neural networks (RNN) and generative

adversarial networks (GAN) to learn UI design patterns from mil-

lions of currently available mobile apps. Once trained, those models

can be used to search for UI design samples given user-provided

descriptions written in natural language and generate professional-

looking UI designs from simpler, less elegant design drafts.

1 INTRODUCTION

User interface (UI) is one of the most important components of

a mobile app because users mainly interact with the app via UI

(e.g., tap/click on an icon or scroll/swipe a page). Thus, UI strongly

influences users’ perception of and experience with the app, which

could decide whether the app is successful or not.

To design beautiful, appealing apps, app development teams

often hire well-trained UI/UX designers. However, even with high-

skilled UI designers, the UI design tasks are mostly manual, and

thus, very time-consuming. To address this problem, this paper

proposes DeepUI, a novel approach to (semi)-automate those tasks

based on learning UI design patterns.

A UI design pattern is a design idea or template that is used in

different apps (or in different places in the same app). For example,

most apps have a login screen with UI elements for user id (e.g.,

username, email, or phone number), password, and sometimes third-

party authentication methods (e.g., login via Facebook, Google, or

Twitter accounts).

The key idea of DeepUI is to develop and deploy advanced deep

learning models based on recurrent neural network (RNN) and

generative adversarial network (GAN) to learn UI design patterns

frommillions of mobile apps currently available on app stores. After

learning, those models can be used to support app developers in

designing UI of new apps with the UI design patterns they learned.

Let us illustrate our approach via two use cases.

1) Search for UI design samples via user-provided descriptions writ-

ten in natural language. Assume a scenario in which a developer

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ICSE-NIER’18, May 27-June 3, 2018, Gothenburg, Sweden

© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5662-6/18/05. . . $15.00
https://doi.org/10.1145/3183399.3183422

needs to design a login screen for a new mobile app. There are sev-

eral requirements for the screen, such as users will enter email and

password to login, the screen will include the logo of the app and

have one or multiple alternate login methods, etc. At the same time,

the developer does not want to reinvent the wheel by designing

the user interface of the login screen from ground up. He wants

to create a login screen that meets the requirement and follows a

popular UI design pattern of existing apps.

The app developer writes the description of the screen he wants

in a natural language like English. Then, he uses that description

as a query to search against DeepUI’s repository of millions of UI

design samples and templates. DeepUI matches and shows design

samples having descriptions similar to what the developer describes.

He can further filter and rank the search results with other criteria

like apps’ ratings or categories.

Collecting millions of UI design samples can be done simply by

downloading millions of apps available on app stores, running them

(e.g., automated via DroidMate[5]), and scraping their UI screens.

However, it is impractical to manually describe those samples in

natural language. Inspired by image captioning techniques based

on deep learning models, we propose NaturalUI, a deep learning

model for learning natural language descriptions of UI designs.

Once trained, NaturalUI can generate natural language descriptions

for UI designs collected by DeepUI, thus, enabling the search of UI

design samples using descriptions written in natural languages.

2) Generate professional-looking UI designs from simpler, less ele-

gant design drafts. Assume a scenario in which a developer needs to

design a user screen for an app. To do that, the developer has come

up with a prototype design which includes several wireframes. Each

wireframe depicts the screen layout or arrangement of the content,

including interface elements and navigational systems, and how

they work together. As an initial design of the screen, a wireframe

is often incomplete. It is also too generic because in a wireframe

the developer often focuses only on the layout of elements. The

developer also needs to design the user interface for the screen

from scratch based on the design in the wireframe. This task could

be frustrated for the developer especially if he does not have prior

experiences in user interface design or front-end programming.

DeepUI helps in this situation by generating elegant, professional-

looking UI design from the prototype design (wireframes) for the

developer. Its core model is GenUI, a deep learning model based

on Generative Adversarial Networks (GAN) [4]. As a GAN, GenUI

has two main components: UIGenerator and UIDiscriminator. Both

components are trained via a repository of elegant, professional-

looking UI designs collected from millions of existing mobile apps.

UIGenerator is trained to generate new ("fake" in GAN terminol-

ogy) designs that look like the existing ("true" in GAN terminology)

ones, while UIDiscriminator aims to discriminate the "fake" and the

"true" ones. once trained, UIGenerator can be able to generate the

"fake" that look highly similar to the "true" ones.

65

2018 ACM/IEEE 40th International Conference on Software Engineering: New Ideas and Emerging Results

Authorized licensed use limited to: University of Waterloo. Downloaded on November 22,2021 at 22:14:00 UTC from IEEE Xplore. Restrictions apply.

Figure 1: Login screens for Instagram, Wish, and Nextdoor

Figure 2:Main screens of Walmart, Ebay, and Amazon

Figure 3:Main screens of Groupon, Mercari, and 5miles

Based on the provided prototype design and its description,

UIGenerator will generate new UI designs having the same struc-

ture and description with the input, but the appearance is much

more like ones in the repository.

In the remaining of this paper, we will discuss our preliminary

observations of mobile apps’ UI design patterns in Section 2. In

Section 3, we describe our twomodels as the core of DeepUI. Section

4 discusses related work and conclusions.

2 MOTIVATION EXAMPLES

In this section, we describe our preliminary result on studying user

interface (UI) design patterns for mobile apps. Different apps often

have similar feature or functionality, thus, could have similar UI

design patterns for screens associated with those features or func-

tionality. In the first example, we choose to study login screens,

a very popular screen that most apps include. We collected login

Figure 4: Search screens of Walmart, Ebay, and Amazon

Figure 5: Search screens of Tophatter, Geek, and Wish

screens of 40 top-free Android apps from 4 categories: Communi-

cation, Education, Shopping, and Social in the Google Play Store.

The extraction process is described as follows. Each app was down-

loaded and installed in aMoto G (1st generation) connected to a

computer. We then used the tool UI Automator Viewer (integrated

in the Android SDK) to extract the screens and the corresponding

view layout hierarchies. After that we manually inspected those

screens to observe UI design patterns exhibit among them.

We observed that there aremainly three patterns for login screens,

namely: login with phone number, login with username and pass-

word, and login with only email. Next, let us describe a pattern in

detail (note that we describe UI elements in top-bottom, left-right

order). Figure 1 shows three login with username and password

screens. From the figure, we could see that the login screens in

the three apps not only have similar UI elements in functionality

but also shares a similar design layout. All three screens have an

image view to display app logo in the top of the screen. Next, they

have two text boxes for entering username and password. Both

text boxes include placeholders to guide users to enter correct in-

formation. The pattern also has a clickable "Forgot password" text

label, and a sign in/login button. This design also includes sign in

button(s) using information from other app, such as, Facebook and

Google. At the bottom of screens, there is a clickable text label or a

button for signing up if users are new to the app and do not have

accounts before.

In the next case study, we examined UI design patterns in the

main screen of shopping apps. To do that we collected main screens

of 30 top-free shopping apps from the Google Play Store. After

manually inspecting the screens we identified that there are two

general UI design patterns exhibiting among those screens. Let us

66

Authorized licensed use limited to: University of Waterloo. Downloaded on November 22,2021 at 22:14:00 UTC from IEEE Xplore. Restrictions apply.

describe the patterns in detail. Figure 2 shows three main screens

of Walmart, Ebay, and Amazon representing the first pattern. In

general, these screens consist four parts: a menu bar, a search bar,

a navigation bar, and a content layout. As we can see from the

figure, a menu bar often consists an image button for opening the

menu, a logo or title, and a button for showing the shopping cart. A

menu bar can also include other buttons, e.g. a reorder button and

a barcode button inWalmart, a voice button in Amazon. A search

bar often consists text box for users to enter a search query. It also

has a image search button on the left and a voice or image search

button on the right. A navigation bar often has a list of buttons.

Each button is linked to a part or feature of the app. Finally, these

apps have a content layout which occupies the majority of the

screen. Note that UI elements in the content layout are different

betweens apps as each app has an own way to present contents.

The second design pattern is depicted via the main screens of

three apps Groupon,Mercari, and 5miles showed in the Figure 3.

We can see that the design of screens is different from the previ-

ous design. The search bar is placed in the top of the screen. The

names of the apps are integrated into the place holder of the search

box. Below the search bar is the category bar. It contains a list of

category buttons. Each category button contains an image and a

text represents the name of corresponding category. Interestingly,

Mercari and 5miles have quite similar design of category buttons

compared to Groupon. The navigation bar is placed in the bottom

of the screens with buttons for features such as Home page, search,

sell, and account.

In the final case study, we compared the search result screens of

shopping apps.We also found two patterns depicted in Figures 4 and

5. The general structure of the first pattern includes a navigation

and/or a search bar in top of the screen, and a vertical list of result

entries. The navigation often includes a menu button, a text label,

and a shopping cart button (in Amazon and Ebay apps). All the

screens include a text label showing the number of results found for

a search, a button for sorting result entries, and a button filtering

result entries. Although, the location of those button might be

different between apps, e.g. the sort and filter buttons in Amazon

and Ebay are placed above the result list while forWalmart, they

are place in the bottom of the screen. The design the a result entry

in three apps is also similar. Each entry has an image showing the

item in the left. In the right, it shows information about the item

such as the title, the manufacturer, condition, price, and shipping.

Figure 5 shows the search result screens for Tophatter, Geek,

and Wish apps. We can see that these screens follow a design

different from the previous design described above. While it still

has a navigation bar in the top of the screen, the result list now is

a grid of result entries. Each result entry is a rectangle cell in the

grid. The design of a result entry is also different from the previous

design. The image showing the item occupies the majority portion

of a result entry, while other information such as price, the number

of users liked or bought the item are placed below the image.

3 APPROACH

3.1 Generating natural descriptions

The input of NaturalUI is a dataset of UI instances and their de-

scriptions. An UI instance could be a screen, a part of screen, or

(0) LinearLayout [0,50][720,1184

(1) TextView: “English …”, id/language_button [207,50][513,118]

(2) LinearLayout [56,258][664,1005]

(5) ImageView: id/login_landing_logo [198,258][522,385]

(6) EditText: “Phone ...”, id/login_username [56,408][664,504]

(7) EditText: “Password”, id/password [56,534][664,630]

(8) TextView: “Log In”, id/next_button_text [72,662][648,758]

(9) TextView: “Forgot your ...”, id/forgot_button [56,758][664,851]

(3) LinearLayout [56,851][664,1005]

(10) LinearLayout [56,851][664,889]

(14) View: id/or_line_left [56,869][326,871]

(15) TextView: “OR”, id/or_text [326,851][394,889]

(16) View: id/or_line_right [394,869][664,871]

(11) TextView: “Log in …”, id/login_facebook [198,993][521,981]

(4) LinearLayout [56,1005][720,1184]

(12) View: id/horizontal_footer_divider [0,1086][720,1088]

(13) TextView: “Don’t have ...”, id/log_in_button [0,1088][720,1184]

(1) A clickable text view to select language
and country in the top with a default value
"English (United States)" and a arrow icon
next to the text
(5) An image view with the logo of the app.
(6) A text box for entering number, email or
username with a place holder "Phone
number, email or username"
(7) A text box for entering password with a
place holder "Password"
(8) A login button with the text "Log In" inside
(9) A clickable text view with the text "Forgot
your login details? Get help signing in."
(10) A horizontal separator with the text "OR"
in the middle of the separator.
(11) clickable text view with the text "Log in
with Facebook".
(12) A horizontal separator.
(13) A clickable text view with a text "Don't
have an account? Sign up."

Figure 6: A sample data in the training dataset of NaturalUI

…

“a” “menu”

START

END

“a”

“bar”

“menu” “cart”

…

…

Whh

Whx

Woh

xt

ht

yt

bv

Figure 7: The structure of NaturalUI

“A menu bar with
a shopping cart button”

UI Design
Recommender

1. “A menu bar … shopping cart…”

2. “A menu bar … shopping cart…”

3. “A menu bar … shopping cart…”

… …
Figure 8: Recommending UI design from a description

an UI element and its description. Figure 6 shows an example of

a data sample in the dataset corresponds with the login screen of

Instagram showed in Figure 1. The dataset is constructed by man-

ually labeling UI screens. Each UI instance includes a screenshot

or image of UI elements. It also contains a view hierarchy tree that

stores hierarchical structure of UI elements. Each node in the tree

corresponds with an UI element and it stores information about the

UI element such as, the coordinates of the element in the screens,

its attributes, resources that the element points to, etc. Each UI

element of the screen has a corresponding description.

The design of NaturalUI is inspired by Deep-Visual [6], a Recur-

rent Neural Network (RNN) [8] for generating natural language

description for images. RNNs is a class of models that learn the

probability distribution of the next word given the current and the

previous context. In NaturalUI, we extend RNNs to also include the

visual representation and structure of UI elements as an input for

the model. More formally, we design a RNN that takes an UI in-

stance and a sequence of words (x1,x2, ...,xt) in the description as
input. It then computes a sequence of hidden states (h1,h2, ...,ht)
and a sequence of outputs (y1, ...,yt).

Figure 7 shows the the overall structure of NaturalUI. The train-

ing process of NaturalUI is proceeded as follows. x1 is set to a special
START vector indicates the start of a sentence, the context vector

h1 is initialized by combining x1 with the semantic information of

67

Authorized licensed use limited to: University of Waterloo. Downloaded on November 22,2021 at 22:14:00 UTC from IEEE Xplore. Restrictions apply.

Generator
Network

Discriminator
Network

Real
Fake

real data

random input generated data

z ∼ pz(z)

x ∼ pdata(x)

G(z)

D(x)

Figure 9: Generative Adversarial Networks (GANs)

the UI instance (bv). bv could be learned by training a Recursive

Neural Network [9]. The desired label y1 is set to the first word
of the sentence. Similarly, we set x2 as the word vector of the first
word and expect the network predict the second word. Finally, in

the last step, xt represents last word, the target label is set to a

special END token indicate the end of a sentence. The cost function

to maximize is the log probability assigned to target labels.

To generate a description for an UI instance, NaturalUI first

computes the semantic representation of the instance bv , x1 is
set to the START vector. From that it updates the context h1 and
computes the distribution over the first word y1. A first word is

sample from the distribution by picking the argmax. x2 is set as the
word vector of first word, and NaturalUI repeats the process until

the END token is generated.

Based on NaturalUI, a system for recommending UI design from

a description is depict in Figure 8. Given a natural language descrip-

tion of a design, the system finds top similar UI design descriptions

generated from NaturalUI. The system then recommends the UI

design instance corresponding with those descriptions.

3.2 Generating user interface design

GAN [4] is a framework for estimating generative models via an

adversarial process, in which we simultaneously train two models:

a generative model G and a discriminative model D. The training
procedure for G is to maximize the probability of D making a mis-

take. This framework corresponds to a minimax two-player game.

The structure of the networks is showed in Figure 9.

An random input z is sampled from a probability distribution

pz (z). The generator network G(z) then takes the random input

z and tries to generate a sample of data. The generated samples
is then fed into the discriminative network D(x). The task of the
discriminative network D(x) is to take input either from the real

data (x is sampled from the probability distribution pdata (x)) or
from the generator and try to predict whether the input is real

or generated. D(x) solves a binary classification problem using

sigmoid function giving output in the range of 0 to 1.

GenUI is proposed based on the architecture of GAN. Figure 10

shows the overall structure of the networks. The training data is

a repository of elegant, professional-looking UI designs collected

from millions of existing mobile apps. Each instance includes the

screen itself, the view hierarchy structure, and all resources asso-

ciated with its UI elements. Given a prototype design instance z,
the generator will generate a set of UI design instances G(z). G(z)
is then fed into the discriminative network D(x). The task of the
discriminative network D(x) is to take input either from the real

Login

UI Design
Dataset

Discriminator
Network

Real

Fake

Generator
Network Login

Welcome

G(z)

D(x)

Figure 10: The structure of GenUI

data or from the generator and try to predict whether the input is

"real" or "fake". The model is trained until the discriminator cannot

distinguish the real data and the generated data from the gener-

ator. The generator then can be used to generate new UI designs

having the same structure and description with the input, but the

appearance is much more like ones in the repository.

4 RELATED WORK

So far as we know of, there has been no previous work for mining

design patterns from mobile app UI. Our work was inspired by

ERICA [3], a system designed by Deka et al. for collecting GUI

interactions from mobile apps. However, in ERICA, the goal and

techniques used were focusing on mining the interaction between

user and app, while our goal is to mine design patterns, hence the

differences in our approach as well. In his follow up works, Deka

presented an approach to app design mining from the backbone

of ERICA [1, 2]. These works provided a dataset for learning app

designs from 9.7k apps. Although, no known research has been

using this dataset for learning the designs of apps.

On the aspect of design patterns, Talton et al. proposed a learning

method using Bayesian Grammar Induction [10] and is applied on

web designs, architecture designs, etc. Nonetheless, this method

has not been applied on mobile app design, and yet to explore the

characteristic and domain differences of it. Similar to that work,

Webzeitgeist [7] by Kumar et al. was focusing on mining the design

of websites. Despite of having similar analogy, such as both app

designs and web designs use a markup language for their structure,

they are vastly different in term of appearance, usages and platforms.

Therefore, our study does not cross path with them.

REFERENCES
[1] B. Deka. 2016. Data-driven Mobile App Design. In UIST.
[2] B. Deka, Z. Huang, C. Franzen, J. Hibschman, D. Afergan, Y. Li, J. Nichols, and

R. Kumar. 2017. Rico: A Mobile App Dataset for Building Data-Driven Design
Applications. (2017).

[3] B. Deka, Z. Huang, and R. Kumar. 2016. ERICA: Interaction Mining Mobile Apps.
In UIST.

[4] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A.
Courville, and Y. Bengio. 2014. Generative Adversarial Nets. In NIPS.

[5] K. Jamrozik and A. Zeller. 2016. DroidMate: A Robust and Extensible Test
Generator for Android (MOBILESoft ’16).

[6] A. Karpathy and L. Fei-Fei. 2017. Deep Visual-Semantic Alignments for Generat-
ing Image Descriptions. IEEE Trans. Pattern Anal. Mach. Intell. (2017).

[7] R. Kumar, A. Satyanarayan, C. Torres, M. Lim, S. Ahmad, S. R Klemmer, and J.
Talton. 2013. Webzeitgeist: design mining the web. In SIGCHI.

[8] T. Mikolov, M. Karafiát, L. Burget, J. Cernocký, and S. Khudanpur. 2010. Recurrent
neural network based language model. In INTERSPEECH.

[9] R. Socher, C. Lin, A. Y. Ng, and C. Manning. 2011. Parsing Natural Scenes and
Natural Language with Recursive Neural Networks. In ICML.

[10] J. Talton, L. Yang, R. Kumar, M. Lim, N. Goodman, and R. Měch. 2012. Learning
design patterns with bayesian grammar induction. In UIST.

68

Authorized licensed use limited to: University of Waterloo. Downloaded on November 22,2021 at 22:14:00 UTC from IEEE Xplore. Restrictions apply.

