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ABSTRACT
This paper conducted a novel study to explore the capabilities of
ChatGPT, a state-of-the-art LLM, in static analysis tasks such as
static bug detection and false positive warning removal. In our
evaluation, we focused on two types of typical and critical bugs
targeted by static bug detection, i.e., Null Dereference and Resource
Leak, as our subjects. We employ Infer, a well-established static
analyzer, to aid the gathering of these two bug types from 10 open-
source projects. Consequently, our experiment dataset contains 222
instances of Null Dereference bugs and 46 instances of Resource Leak
bugs. Our study demonstrates that ChatGPT can achieve remark-
able performance in the mentioned static analysis tasks, including
bug detection and false-positive warning removal. In static bug
detection, ChatGPT achieves accuracy and precision values of up to
68.37% and 63.76% for detecting Null Dereference bugs and 76.95%
and 82.73% for detecting Resource Leak bugs, improving the preci-
sion of the current leading bug detector, Infer by 12.86% and 43.13%
respectively. For removing false-positive warnings, ChatGPT can
reach a precision of up to 93.88% for Null Dereference bugs and
63.33% for Resource Leak bugs, surpassing existing state-of-the-art
false-positive warning removal tools.

CCS CONCEPTS
• Software and its engineering → Automated static analysis;
Software defect analysis; Software testing and debugging.

KEYWORDS
Static analysis, ChatGPT, Large language models

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
AIware ’24, July 15–16, 2024, Porto de Galinhas, Brazil
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0685-1/24/07
https://doi.org/10.1145/3664646.3664777

ACM Reference Format:
Mohammad Mahdi Mohajer, Reem Aleithan, Nima Shiri Harzevili, Moshi
Wei, Alvine Boaye Belle, Hung Viet Pham, and Song Wang. 2024. Effective-
ness of ChatGPT for Static Analysis: How Far Are We?. In Proceedings of the
1st ACM International Conference on AI-Powered Software (AIware ’24), July
15–16, 2024, Porto de Galinhas, Brazil. ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3664646.3664777

1 INTRODUCTION
Numerous static code analysis techniques have been utilized in the
literature for the automatic detection of real-world software bugs [4,
7, 42, 44, 63]. These tools typically rely on predefined heuristic
rules to scan and analyze the codebases or binaries of software
projects [7, 42, 44]. During this analysis, any violations of these rules
are categorized as a bug, leading the tools to flag the corresponding
code artifact, such as a line or a group of lines, as buggy. However,
employing static bug detectors presents specific challenges. One
primary issue is that most static bug detectors generate numerous
false-positive warnings [2, 41]. Consequently, additional manual
review is essential to validate the reported potential bugs, resulting
in a time-consuming and labor-intensive process [53].

Recently, Large Language Models (LLMs) such as ChatGPT have
demonstrated significant potential in various reasoning and decision-
making roles, serving as intelligent agents, especially in SE tasks
such as code generation and understanding [25, 59, 65]. However,
to date, there has yet to be research exploring the capabilities
of ChatGPT for static code analysis tasks [19]. To address this
gap, in this paper, we take a step toward conducting an empiri-
cal study on the effectiveness of ChatGPT for static code analysis.
In our study, we employed ChatGPT on two different types of
tasks: 1) static bug detection and 2) false positive warning removal.
To evaluate ChatGPT, we select two typical and widely-studied
bugs [5, 8, 16, 32, 33, 35, 40, 61] commonly targeted by static bug
detection: Null Dereference and Resource Leak as our subjects. Fol-
lowing existing works [22, 33], we utilize Infer [26] to facilitate the
collection of these two types of bugs from 10 open-source projects.
As a result, our dataset includes 222 Null Dereference bugs and 46
Resource Leak bugs.
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In this study, we use the latest versions of ChatGPTmodels at the
time of the study (i.e., ChatGPT-3.5-Turbo and ChatGPT-4). More-
over, we adhere to the best practices of prompt engineering [6, 14]
and create precise and context-aware prompts to effectively harness
the language models’ capabilities. We explore various prompting
strategies, including zero-shot, one-shot, and few-shot prompting,
to evaluate the performance of different ChatGPTmodels across var-
ious scenarios. By strategically adapting our prompts and method-
ologies, we aim to identify the most efficient and accurate ways of
leveraging LLMs in static analysis.

Our experiments reveal that ChatGPT can achieve remarkable
performance with significant improvements when compared to
previous baseline methods for each respective task: 1) In static bug
detection, they can achieve a precision rate that is 12.86% higher
for Null Dereference bugs and 43.13% higher for Resource Leak bugs
as improvements compared to the base results of Infer. 2) In false-
positive warning removal, they can imp Infer’s precision rate by
28.68% for Null Dereference bugs and 9.53% for Resource Leak bugs,
surpassing the performance of existing baselines. Additionally, it
can improve the precision of the results of static bug detection in
the first step by 16.31% for Null Dereference bugs.

As a summary, this paper makes the following contributions:
• Wepresent a novel empirical study on ChatGPT’s capabilities
on two static analysis tasks: 1) static bug detection and 2)
false-positive warning removal.

• We show that ChatGPT can effectively improve static bug
detection performance, improving the base results of the
current state-of-the-art baseline tool, i.e., Infer.

• We demonstrate that ChatGPT can effectively eliminate false-
positive warnings from the output of static bug detectors
such as Infer and its extended static bug detector, thereby
enhancing their precision and surpassing the performance of
existing baseline methods in false-positive warning removal.

• We release the dataset and the source code for our experi-
ments for future usage and the replication of our study1.

2 BACKGROUND
2.1 Static Bug Detection
Static bug detection is an automated technique for inspecting and
analyzing a program’s source code, object code, or binaries, all with-
out executing the program [3, 39]. This process identifies potential
bugs by examining how the code’s control and data flow align with
specific bug patterns and rules [3, 64]. Multiple tools and methods
have been developed in both research and industry for static bug
detection [21]. Infer, created by Meta, is a static bug detection tool
capable of being utilized across various programming languages,
including Java, C, C++, Objective-C, and C#. It accomplishes this
by utilizing a predetermined set of rules to identify potential bugs
and conducting inter-procedural analysis as part of the project
compilation process [26]. Google has also introduced ErrorProne, a
static bug detector tailored for Java programs [17]. In this study, we
employ Infer as a baseline for comparison with ChatGPT to assess
the improvement and as a tool for generating warnings for our data
collection.

1https://doi.org/10.5281/zenodo.10828316

2.2 False-Positive Warning Removal
A significant issue associated with static bug detectors is their
tendency to generate a considerable volume of inaccurate warn-
ings, which are essentially alerts that are not genuine indicators of
actual bugs [20, 23, 30, 33, 49, 54, 57, 72]. Recent research demon-
strates that the false-positive warning rate can escalate to as high
as 91% [30]. Recent studies have addressed this issue by provid-
ing various techniques for detecting and eliminating false-positive
warnings. Wang et al. [66] have proposed a “Golden Features” set
to detect actionable warnings and eliminate the unactionable ones.
Recently, Kharkar et al. [33] introduced distinct tools that leverage
state-of-the-art neural models, mostly transformer-based models,
which are widely regarded as the most effective approach for elimi-
nating false-positive warnings. In this work, we opt to utilize the
tools outlined in this study as our baselines for comparison. Specif-
ically, we use the feature-based approach, DeepInferEnhance, and
a GPT-C powered approach [33] as our baselines for false positive
removal.

2.3 Large Language Models
Large Language Models (LLMs) have gained significant popularity
in recent research and industrial applications. Numerous recent
studies are investigating the utilization of LLMs in the field of
Software Engineering (SE), driven by the significant progress and
advancements achieved by LLMs [13, 58, 70, 74]. ChatGPT [51], one
of the most renowned LLMs, has recently gained widespread recog-
nition for performing software engineering tasks [6, 14, 18, 70].
ChatGPT is accessible throughout an API2 and has been created
by harnessing the capabilities of two state-of-the-art GPT models,
specifically, GPT-3.5 Turbo [52] and GPT-4 [1]. Utilizing LLMs like
ChatGPT as decision-making components introduces a novel ap-
proach to systematically interact with instruction-tuned LLMs, a
method known as prompt engineering. Prompt engineering is the
practice of creating tailored input queries that effectively communi-
cate with LLMs [6, 14]. Numerous investigations leverage prompt
engineering in their utilization of LLMs [6, 31, 46, 70, 73]. Prompt
engineering as a practice offers the flexibility to utilize various
strategies, including the zero-shot approach, where the LLM is
prompted without any prior input/output examples; the one-shot
method, involving an additional example; and the few-shot strat-
egy, denoted as K-shot, which provides K examples as previous
input/output pairs for the LLM [14, 31]. Moreover, in prompt engi-
neering, techniques like Chain-of-Thought (COT) are employed to
enhance the correctness of generated output. This is achieved by
either including the thinking steps in examples or requesting an ex-
planation of the decision-making process from the LLM [14, 34, 68].

3 DATA COLLECTION
In this work, we take two types of typical and critical bugs that
are targeted by static bug detection, i.e., Null Dereference and Re-
source Leak, as our subjects. To accelerate the data collection, we
first applied Infer [26] to our experimental projects with a focus on
detecting Null Dereference and Resource Leak bugs. The rationale be-
hind selecting Infer is its extensive adoption in various companies,
including Microsoft. Furthermore, Infer exhibits higher precision
2https://platform.openai.com/docs/api-reference
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Table 1: Summary of analyzed projects. Projects highlighted
in are from Kharkar et al. [33], and projects highlighted in
are collected by us. The warnings reported in this table are

generated by Infer [26] and manually verified. The column
“Verified Warnings” has the number of verified warnings,
including total, true positives (#TP), and false positives (#FP),
for corresponding projects.

Verified Warnings
Project Version LOC Repository Group

#Total #TP #FP

nacos 2.0.2 217,653 Alibaba 58 35 23

azure-maven-plugins 2.2.2 53,025 Microsoft 45 29 16

playwright-java 1.13.0 67,548 Microsoft 5 5 0

java-debug 0.47.0 22,852 Microsoft 2 1 1

dolphinscheduler 2.0.9 215,808 Apache 100 77 23

dubbo 3.2 350,957 Apache 193 74 119

bundletool 1.15.1 135,711 Google 51 14 37

guava 32.1.1 698,201 Google 35 12 23

jreleaser 1.7.0 114,914 Community 30 19 11

jsoup 1.16.1 33,689 Community 33 2 31

Total Number of Verified Warnings 552 268 284

in comparison to alternative static analysis tools, leading to the
generation of more valid warnings [33]. We apply Infer to a selec-
tion of seven prominent GitHub projects (with at least more than
200 stars), along with three projects featured in prior research, to
generate warnings [33]. These projects are shown in Table 1.

Note that, as Infer can report false positives [22, 33], we fur-
ther manually check whether it is a true bug or a false positive
for each reported warning. This manual labeling process involves
three authors with at least four years of development experience,
each independently reviewing all the reported warnings by Infer.
For each warning, they assign a binary label, i.e., zero indicating
a “false positive”, signifying that the warning generated by Infer
is incorrect and does not represent a true bug, and one indicat-
ing a “true positive”, indicating that the warning is accurate and
demonstrates a real bug. Following this individual labeling, the
authors then collaborate to identify and resolve any discrepancies
or conflicts in their assessments. After resolving these conflicts, we
have our comprehensive dataset containing warnings generated by
Infer, their corresponding ground truth labels, and the method by
which the warning occurred. Eventually, we have 268 true-positive
warnings and 284 false-positive warnings in our dataset.

4 STUDY SETUP
4.1 Overview
Figure 1 provides an overview of the pipeline of our study, which
contains two main steps: 1) evaluating ChatGPT for static bug
detection (Section 5.1) and 2) evaluating ChatGPT on identifying
false-positive bugs in the results of Infer and step 1 for improving
the detection accuracy (Section 5.2).

4.2 Research Questions
To evaluate the performance of ChatGPT, we design experiments
to answer the following research questions (RQs):

Figure 1: The overview of our study pipeline.

Table 2: Prompt templates used in this work
RQ Prompt Template

1

You are an advanced static analyzer for programs and source codes written in Java.
Your duty is to detect <BugType> bugs in the given Java codes delimited by ####
REMEMBER: Each of these Java codes contains a method implementation,
and you are supposed to analyze the body of this method.
REMEMBER: <Description and Context Related to the BugType>
REMEMBER: Only report the objects or method and function calls and invocations
you are sure and confident are highly likely a <BugType> potential bug.
Please also explain your decisions in the output.
<FORMATTING INSTRUCTIONS>

2

You possess expertise in the examination of Java programs and their source code.
We’ve employed an external static analyzer on Java programs and their source code,
which has produced warnings regarding potential <BugType> issues. Your responsibility
is to assess the correctness of the warnings generated by the external static analyzer.
Some of these warnings are false-positive predictions, which means that these warnings
are not a correct indicator of null dereference bugs. You need to ensure that these warnings
indicate a potential <BugType> bug.
For your analysis, you will receive the following items as input:
1. The Java code enclosed by #### in the input.
2. The warning generated by the external static analyzer is delimited by $$$$ in the input.
REMEMBER: <Description and Context Related to the BugType>
REMEMBER: Each of these Java codes contains a method implementation,
and you are supposed to analyze the body of this method.
Please also explain your decisions in the output.
<FORMATTING INSTRUCTIONS>

RQ1 (Static Bug Detection): How effective is ChatGPT in
improving the performance of static bug detectors?
RQ2 (False Positive Warning Removal): What is the effective-
ness of ChatGPT in filtering false positive warnings?

We explore the potential of ChatGPT in the realm of static bug
detection in RQ1. In RQ2, we delve into the effectiveness of ChatGPT
in identifying and eliminating false-positive warnings from the
output of a static bug detector.

4.3 ChatGPT Versions
We choose the latest variations of ChatGPT models [51], ChatGPT-
4 [1] andChatGPT-3.5 Turbo [52], as our study subjects. For ChatGPT-
4 and ChatGPT-3.5 Turbo, we utilize the default settings, which pro-
vide maximum token support of 8,192 and 4,097, respectively [1, 52].
Due to this limitation in the maximum input token, we constrain
the code inputs to the method scope, implying that we only provide
the methods themselves as input code snippets to the LLMs.

4.4 Prompting Strategies
In each of our experiments, we use different prompt engineering
strategies such as zero-shot, one-shot, and few-shot strategies. In
the zero-shot strategy, the LLM is prompted without preceding ex-
amples from the previous LLM input and output pairs. In contrast,
the few-shot and one-shot strategies incorporate examples from
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the previous LLM input and output pairs. The difference between
the one-shot and few-shot strategies lies in the number of examples
included: the one-shot strategy employs a single example in the
prompt, while the few-shot strategy encompasses multiple exam-
ples. In RQ1 (static bug detection) and RQ2 (false-positive warning
removal), we use zero-shot, one-shot, and few-shot strategies. In
this paper, for the few-shot strategy (K-shot), we input the model
with three examples (K = 3). The rationale for selecting K = 3 is
based on the consideration that opting for values exceeding three
could potentially violate the maximum token limit constraint im-
posed on our inputs for ChatGPT models (details in Section 4.3).
Furthermore, in the prompts for all of our experiments, we request
the LLM to explain its decision-making process and the steps it
takes to arrive at its conclusions. According to the literature, this
approach, known as zero-shot Chain-of-Thought reasoning, can en-
hance the output’s robustness and validity [34, 68]. Eventually, our
prompt templates for each of our research questions are depicted in
Table 2. Our prompt templates offer detailed descriptions and con-
text for bug types such as Null Dereference and Resource Leak. This
contextual information helps us to use the models’ full capabilities
for detection performance. This includes defining the criteria that
classify these bugs. Additionally, we guide LLMs using delimiters
to identify specific inputs within the given prompt. For instance, in
the prompt template for RQ1 (static bug detection), we use #### to
specify the location of the input Java code snippet, ensuring that
the LLM focuses solely on this section for analysis. Moreover, at
the end of each prompt template, two elements are incorporated: 1)
a request for the model to explain its decision-making process and
the rationale behind the output, and 2) a directive for the model
to generate the output in a specified format, following the pro-
vided formatting instructions. For example, in our experiments, we
instruct the models to produce the output in JSON format, facili-
tating easier parsing of the output into our program variables for
subsequent analysis.

4.5 Data Sampling
Our experiments employ N -fold cross-validation to remove poten-
tial data sampling bias, with N set to 5 in this study [69]. This
approach involves splitting the dataset into five subsets, where
one-fifth of the data serves as the validation set, and the remaining
four-fifths of functions are used to select examples in prompting
the LLMs for one-shot and few-shot strategies. We select the exam-
ples for these strategies randomly in a uniform distribution. Also,
in each of the examples utilized in one-shot and few-shot strate-
gies, we incorporate one true-positive record and one false-positive
record to prevent any bias towards a particular group of examples
when applying these strategies to the LLM.

4.6 Evaluation Metrics
We employ the following evaluation metrics to assess our experi-
ments concerning each of our research questions:

For Static Bug Detection (RQ1) and False-Positive Warning
Removal (RQ2), we use Accuracy, Precision, and Recall metrics
since we have a ground truth for the warnings we generated for our
dataset for evaluation. Also, to choose the best combination of strat-
egy and model, we use the F1-score metric. Also, it is important to

highlight that our dataset relies on the warnings produced by Infer,
containing both accurate warnings (true positives) and inaccurate
warnings (false positives). As a result, precision is the only metric
available for evaluating Infer because other values needed for cal-
culating recall and accuracy, such as true negative rate and false
negative rate, are not available. Consequently, in our experiments
measuring improvements relative to Infer, we prioritize precision
enhancement as the primary factor.

5 RESULT ANALYSIS
5.1 RQ1: Performance of ChatGPT on

Improving Static Bug Detectors
Approach: In the case of static bug detection, we input the code
snippet of each record in our dataset to the ChatGPT models. We
expect that ChatGPT models will identify the issue previously de-
scribed and detected by Infer and produce a valid warning. We
perform our experiments under different prompting strategies such
as zero-shot, one-shot, and few-shot strategies (more details in Sec-
tion 4.4) by using two different ChatGPT models, i.e., ChatGPT-3.5
Turbo and ChatGPT-4 (more details in Section 4.3). The models
have been given a specialized prompt with specifications for each
bug type to increase its detection validity. For example, to address
Null Dereference bugs, we collect common bug patterns for this type
of bug, like not having null checks before dereferencing an object.
We then provide this information to the LLM in the initial prompt.
This specialization helps the models understand the task at hand.
Additionally, for Resource Leak bugs, a similar approach is used.
Moreover, specific structured output requirements are defined to
facilitate easy parsing and extracting necessary information from
the models’ responses. Given that we possess a ground truth for
the provided buggy code snippet, we expect ChatGPT models to
recognize the problem previously identified by Infer and issue a
valid warning for it. Furthermore, we ask ChatGPT models to offer
an additional explanation for each potential bug it detects and the
warnings it generates.
Baselines: As a baseline for this RQ, we select Infer, a state-of-the-
art static bug detector. Using our collected dataset, we compare
ChatGPT models’ performance in static bug detection with Infer’s
base results to see if it can improve Infer’s precision.

It is important to note that we did not compare ChatGPT models’
performance directly to Infer as a standalone static bug detector. In
fact, we evaluated their performance only on warnings generated
by Infer, not the entire body of source code in the examined projects
in our dataset. Our main goal is to determine whether ChatGPT
models can help improve the base results produced by Infer.
Result: Table 3 summarizes the results of the static bug detection
task under different prompting strategies with different ChatGPT
models using Infer on our collected dataset and the projects used in
the prior study by Kharkar et al [33]. We also show the optimal com-
bination of model and strategy for the static bug detection task for
each of the datasets, which is the one that has the highest F1-Score
for a specific bug type. Notably, in our collected dataset, the most
effective combination for both Null Dereference and Resource Leak
bugs involves utilizing ChatGPT-4 with the zero-shot strategy. Con-
sidering this, in static bug detection, ChatGPT models can achieve
accuracy, precision, and recall rates of 68.37%, 63.76%, and 88.93%,
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Table 3: Summary of ChatGPT models’ results for each of the model-strategy combination in Static Bug Detection (RQ1)
using two datasets. In this table, rows highlighted in indicate the most effective combination of model and strategy for Null
Dereference bugs, and rows in indicate the most effective one for Resource Leak bugs.

Dataset Bug Type Infer’s Precision Strategy Model Accuracy Precision Recall F1-Score

GPT-3.5-Turbo 50.66% 52.32% 40.64% 45.75%Zero Shot GPT-4 68.37% 63.76% 88.93% 74.27%
GPT-3.5-Turbo 60.67% 62.49% 59.76% 61.09%One Shot GPT-4 64.54% 62.20% 79.18% 69.67%
GPT-3.5-Turbo 60.47% 66.14% 48.63% 56.05%

Null Dereference 50.9%

Few Shot GPT-4 64.31% 65.21% 64.96% 65.09%
GPT-3.5-Turbo 56.31% 44.34% 40.44% 42.30%Zero Shot GPT-4 76.95% 82.73% 55.11% 66.15%
GPT-3.5-Turbo 34.87% 35.03% 72.22% 47.18%One Shot GPT-4 72.78% 68.39% 63.55% 65.88%
GPT-3.5-Turbo 49.31% 41.49% 65.55% 50.82%

Our collection

Resource Leak 39.6%

Few Shot GPT-4 75.25% 74.12% 59.55% 66.04%
GPT-3.5-Turbo 50.31% 69.85% 41.53% 52.09%Zero Shot GPT-4 77.90% 81.87% 85.51% 83.65%
GPT-3.5-Turbo 58.25% 70.90% 59.87% 64.92%One Shot GPT-4 70.51% 80.95% 72.56% 76.53%
GPT-3.5-Turbo 56.47% 75.60% 51.28% 61.11%

Null Dereference 65.2%

Few Shot GPT-4 68.52% 80.57% 67.56% 73.50%
GPT-3.5-Turbo 61.66% 50.0% 50.0% 50%Zero Shot GPT-4 84.61% 100% 71.42% 83.32%
GPT-3.5-Turbo 46.66% 50% 70% 58.33%One Shot GPT-4 73.33% 60% 50% 54.54%
GPT-3.5-Turbo 48.33% 36.66% 40% 38.26%

Projects from [33]

Resource Leak 53.8%

Few Shot GPT-4 68.33% 60% 40% 48%

respectively, for Null Dereference bugs. Likewise, for Resource Leak
bugs, these metrics can attain values of 76.95%, 82.73%, and 55.11%,
respectively. This indicates that ChatGPT models exhibit precision
levels that are 12.86% and 43.13% higher than Infer, enhancing the
performance of the state-of-the-art static bug detector baseline.
Furthermore, it is noteworthy that some other model-strategy com-
binations also demonstrate significant enhancement after applying
to Infer’s base results. For instance, ChatGPT-3.5-Turbo utilized
with the one-shot strategy continues to enhance Infer’s base re-
sults in the detection of Null Dereference bugs, achieving a rate of
62.49% compared to Infer’s 50.9%. We can also see a similar result
in the dataset from the projects used by Kharkar et al. [33]. In this
scenario, the most effective strategy and model combination is the
zero-shot strategy coupled with the ChatGPT-4 model. Compared
to Infer’s base results on this dataset depicted in Table 3, we have a
16.6% and 46.2% boost in precision for Null Dereference and Resource
Leak bugs, respectively.

Answer to RQ1: ChatGPT can significantly improve the base
results of the state-of-the-art static bug detection tool (i.e., Infer)
on detecting Null Dereference and Resource Leak bugs.

5.2 RQ2: Performance of ChatGPT on
False-Positive Warning Removal

Approach: To answer this RQ, we input both a code snippet and
the warning linked to the code snippet generated by a bug detector
to the ChatGPT models. This step aims to improve the precision of
static bug detection by eliminating false-positive warnings. These
warnings can originate from various static bug detectors, such as

Infer’s output or the results of RQ1 by ChatGPTmodels. To examine
the generalizability of ChatGPT models in removing false positives,
we use the warnings generated by both Infer and ChatGPT models
in RQ1 (as described in Section 5.1). Subsequently, the models, pre-
viously instructed with specialized guidelines, evaluate the code
snippet and its corresponding warning. We also perform our ex-
periments under different prompting strategies such as zero-shot,
one-shot, and few-shot strategies (more details in Section 4.3) by
using two different ChatGPT models, i.e., ChatGPT-3.5 Turbo and
ChatGPT-4 (more details in Section 4.3).
Baselines: We select the state-of-the-art false-positive removal
approach proposed in the recent study conducted by Kharkar et
al. [33], i.e., GPT-C and two other baselines to evaluate GPT-C,
which are a feature-based logistic regression model [33] and Deep-
InferEnhance (based on CodeBERTa) [33]. However, due to con-
fidential issues, the authors neither disclosed the source code for
their tool nor their experiments. They also did not release their
collected dataset. Thus, to enable a meaningful comparison with
the baseline tools outlined in their study, we gathered data that
closely mirrored the one described in their paper, including the
same projects and similar versions. Ultimately, we conducted our
experiments on a dataset akin to the one they utilized, allowing for
a fair and direct comparison between ChatGPT models and their
baseline tools.
Result: As we explained, we have two options for the static bug
detector utilized for false-positive warning removal:
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Table 4: ChatGPT models’ performance in False-Positive Warning Removal (RQ2) on warnings generated by Infer and ChatGPT.
In this table, POriginal is the precision of the static bug detector for the corresponding bug type and PAfter is the precision
of the static bug detector after applying False-Positive Warning Removal process. “Imp.” indicates the amount of precision
improvement. The records that have no improvement in precision are shown with “–”.

Static Bug Detector Bug Type Strategy Model POriginal PAfter Imp. Recall Accuracy F1-Score
GPT-3.5-Turbo 40% - 13.07% 37.91% 19.71%Zero Shot GPT-4 95% +29.8 27.30% 51.41% 42.42%
GPT-3.5-Turbo 59.32% - 43.71% 43.91% 50.33%One Shot GPT-4 95% +29.8 51.66% 66.29% 66.93%
GPT-3.5-Turbo 53.63% - 52.17% 41.40% 52.89%

Null Dereference

Few Shot GPT-4

65.2%

93.88% +28.68 64.23% 73.46% 76.27%
GPT-3.5-Turbo 63.33% +9.53 80% 75% 70.69%Zero Shot GPT-4 60% +6.2% 60% 80% 60%
GPT-3.5-Turbo 40% - 60% 50% 48%One Shot GPT-4 60% +6.2% 50% 75% 54.54%
GPT-3.5-Turbo 50% - 80% 50% 61.53%

Infer

Resource Leak

Few Shot GPT-4

53.8%

60% +6.2% 60% 80% 60%
GPT-3.5-Turbo 70% - 19.27% 32.93% 30.22%Zero Shot GPT-4 86% +4.13% 26.72% 37.45% 40.78%
GPT-3.5-Turbo 67% - 30.72% 32.72% 42.26%One Shot GPT-4 97.5% +15.63 52.72% 59.92% 68.44%
GPT-3.5-Turbo 73.97% - 38.18% 38.90% 50.36%

ChatGPT Null Dereference

Few Shot GPT-4

81.87%

98.18% +16.31 77.45% 80.25% 86.59%

Table 5: Performance of False-Positive Warning Removal of
baseline tools proposed by [33]. “Precision Imp.” indicates
the precision improvement of Infer after applying each of
the baseline tools. “ChatGPT Recall Imp.” shows ChatGPT’s
maximum improvement in Recall for each bug type men-
tioned in Table 4 compared to the baseline tool.

Baseline Bug Type Precision Imp. Recall ChatGPT Recall Imp.

Feature-based
Null Dereference +8.26% 65.1% +12.35%
Resource Leak – – –

DeepInferEnhance
Null Dereference +15.13% 88.3% -10.85%
Resource Leak – – –

GPT-C
Null Dereference +17.47% 83.7% -6.25%
Resource Leak +5.56% 64.5% +15.5%

5.2.1 Option 1 – Infer. Table 4 shows the results of applying Chat-
GPT as a false-positivewarning removal tool onwarnings generated
by Infer and ChatGPT models in RQ1.

As demonstrated, when dealing with Null Dereference bugs, we
can enhance Infer’s precision by 28.68% by employing the zero-
shot strategy alongside the ChatGPT-4 model. In the case of Re-
source Leak bugs, Infer’s precision can be improved by up to 9.53%
when utilizing the zero-shot strategy combined with the ChatGPT-
3.5-Turbo model. Furthermore, in comparison to the current base-
lines [33], as indicated in Table 5, our findings reveal that ChatGPT
models can surpass the existing baselines in precision improvement,
with a margin of at least 11.21% and 3.97% for Null Dereference
and Resource Leak bugs, respectively. Also, it is worth noting that
Kharkar et al. [33] did not provide the results of the feature-based
logistic regression model and DeepInferEnhance for Resource Leak
bugs. Therefore, we specified them with “–” in Table 5.

5.2.2 Option 2 – ChatGPT’s results from RQ1. Table 4 also shows
the result of false-positive warning removal on the warnings gener-
ated by ChatGPT models in Section 5.1. Given that these warnings
may arise from various model-strategy combinations, we selected
the most effective model-strategy combination for warning gen-
eration to further enhance precision through the false-positive
warning removal process. Therefore, we opted for the zero-shot
strategy with the ChatGPT-4 model.

Moreover, it is worth noting that no false-positive warnings were
associated with Resource Leak issues in the warnings generated by
this specific model-strategy combination. Consequently, our pri-
mary focus remains improving the false-positive warnings related
to Null Dereference issues.

As shown in Table 4, by selecting a proper model-strategy com-
bination, which is, in this case, the few-shot strategy with the
ChatGPT-4 model, we can improve the precision by removing
false-positive warnings of the warnings generated in Section 5.1 by
16.31%.

Answer to RQ2: ChatGPT can effectively remove false-positive
warnings and outperform the previous state-of-the-art false-
positive warning removal baselines.

6 DISCUSSIONS
6.1 Reasons for Missing Detecting Bugs
ChatGPT also has limitations, such as missing detection of bugs in
RQ1. In this section, we explore the underlying reasons behind the
bugs that ChatGPT models cannot detect. For our analysis, we first
collect all the missing bugs that ChatGPT models cannot detect.
Then, we manually examine all the missing bugs and observe the
possible recurring and common patterns among them.
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1 public DependentParameters getDependency() {
2 if ( this .dependency == null) {
3 Map<String, Object> taskParamsMap =
4 JSONUtils. parseObject ( this .getTaskParams(), new
5 TypeReference<Map<String, Object>>() {});
6 this .dependency = JSONUtils.parseObject (( String )
7 taskParamsMap.get(Constants.DEPENDENCE),
8 DependentParameters.class );
9 }

10 return this .dependency;}

Ground Truth Warning: object “taskParamsMap” last as-
signed on line 3 could be null and is dereferenced at line 7.

ChatGPT’s Explanation:The code checks if “this.dependency”
is null before assigning a value to it. Therefore, there is no
potential null dereference bug in this code.

Figure 2: An example of a missing Null Dereference.

1private static void registerContextBeans ( ConfigurableListableBeanFactory
2beanFactory, DubboSpringInitContext context ) {
3 registerSingleton (beanFactory, context );
4 registerSingleton (beanFactory,
5 context .getApplicationModel ());
6 registerSingleton (beanFactory,
7 context .getModuleModel());
8 }

Ground Truth Warning: object returned by “con-
text.getApplicationModel()” could be null and is dereferenced
by call to “registerSingleton(...)” at line 6.

ChatGPT’s Explanation: The values of “con-
text.getApplicationModel()” and “context.getModuleModel()”
are being checked for null before being registered as singletons,
so there is no null dereference bug in this code.

Figure 3: An example of a missing Null Dereference bug by
ChatGPT. In this case, the “registerSingleton” is a function
declared as outside of the method where the Null Dereference
is detected. Consequently, ChatGPT attempts to establish a
connection between the registering for singleton and theNull
Dereference issue, even though they are not directly related.

6.1.1 Null Dereference. Wehave identified three patterns fromNull
Dereference bugs that ChatGPT models missed. Firstly, ChatGPT
models struggle to distinguish Null Dereferences of objects within a
null check for another object. This is often observed when ChatGPT
models overlook objects that might become null and dereferenced
later within a null check for another object. This issue becomes
more pronounced when these objects have some form of relation-
ship with one another, such as when the first object serves as an
argument to a method call of the second object. Figure 2 shows
an example bug that is missing by ChatGPT models. Second, we

1private void cacheNormalInvokers(BitList<Invoker<T>>
2 invokers ) {
3 BitList <Invoker<T>> clonedInvokers = invokers . clone ();
4 clonedInvokers . removeIf (( invoker) −>
5 invoker . getUrl (). getProtocol (). equals (MOCK_PROTOCOL));
6 normalInvokers = clonedInvokers ;}

Ground Truth Warning: object returned by “in-
voker.getUrl().getProtocol()” could be null and is dereferenced
at line 5.
ChatGPT’s Explanation: The ‘normalInvokers‘ object is as-
signed the value of ‘clonedInvokers‘, which is a cloned version
of ‘invokers‘. However, there is no null check for ‘clonedInvok-
ers‘ before assigning it to ‘normalInvokers‘. If ‘invokers.clone()‘
returns null, it will result in a null dereference bug.

Figure 4: An example of a missing Null Dereference bug by
ChatGPT. In this example, ChatGPT missed the Null Derefer-
ence issue in the method call chain and did not report any-
thing about it.

have observed that ChatGPT models sometimes make random as-
sumptions about the method, API call, class variable, and instance
variable that are usually outside the current method’s scope. Chat-
GPT models’ inability to access the implementation details of these
entities hinders its ability to determine whether they can return null
or not. Consequently, ChatGPT models occasionally make incorrect
assumptions about the return values of such entities, leading to
missing potential Null Dereference bugs. Figure 3 shows an exam-
ple bug that ChatGPT models cannot detect for the above reason.
Third, another prevalent pattern is ChatGPT models’ difficulty in
detecting Null Dereferences that occur in a single line through a
chain of method invocations. While ChatGPT models may be able
to detect the first object invoking a method, it often fails to identify
the subsequent methods chained through method calls to the initial
object, which could also return null. As an example, we can look at
Figure 4.

6.1.2 Resource Leak. The prevalent pattern of overlooked Resource
Leak bugs involves cases where the code partially handles the
release of resources. This implies that while some resources are
properly released after their use, there are still other resources that
remain unreleased. Figure 5 is an example of a missing Resource
Leak bug due to this issue.

7 THREATS TO VALIDITY
This research focuses solely on Java projects, and we do not con-
sider projects developed in other programming languages. There-
fore, conducting a similar analysis on additional languages (e.g.,
C, C#, and Python) can contribute to the validity of our research.
Another potential challenge to the validity of our work is that
the evaluation is conducted exclusively on a dataset created from
warnings generated by Infer, without taking into account warnings
generated by alternative static analysis tools like SpotBugs [60] or
Error-Prone [17]. In this study, we opted not to include SpotBugs
and Error-Prone as static bug detectors. This decision was made
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1 private void executeForSdkArchive() {
2 try (TempDirectory tempDir = new
3 TempDirectory(getClass (). getSimpleName())) {
4 ZipFile asarZip = new
5 ZipFile (getSdkArchivePath (). get (). toFile ())
6 Path modulesPath = tempDir.getPath (). resolve (EXTRACTED_SDK);
7 try ( ZipFile modulesZip = getModulesZip(asarZip, modulesPath)) {
8 // long try−body codes ... (no release of resources )
9 } catch (Exception e) {

10 // long exception codes ... (no release of resources )
11 }}

Ground Truth Warning: resource of type “java.util.zip.ZipFile”
acquired by call to “ZipFile(...)” at line 4 is not released after line 20.

ChatGPT’s Explanation: The resources “tempDir” and “asarZip”
are allocated using the try-with-resources syntax, which means
they will be automatically released and closed after the try block
finishes. Therefore, there is no resource leakage bug in this code.

Figure 5: An example of a missing Resource Leak bug by
ChatGPT. Although ChatGPT correctly identifies “tempDir”
as not buggy, it cannot detect the “asarZip”, which is a true
Resource Leak bug. The code does not use Java 7 try-with-
resources syntax for the “asarZip” object. It only uses it for
“tempDir” and also “modulesZip” in the next lines.

because these tools categorize bug types differently, and we aimed
to maintain consistency in our bug classification [22]. Additionally,
Infer has better precision and outperforms them in accuracy [33].
Note that, in our investigation, we examined ChatGPTmodels using
a dataset derived from the warnings generated by Infer. While we
demonstrated that ChatGPT models can improve Infer’s detection
and precision, we did not directly compare ChatGPT to Infer be-
cause our evaluation only covers a subset of the files and methods
processed by Infer. To ensure an unbiased and equitable compari-
son, establishing a detection pipeline akin to Infer, with ChatGPT
serving as the core detection mechanism, can enhance the credi-
bility and validity of our research. Also, we exclusively employed
LLMmodels fromOpenAI, specifically ChatGPT-4 and ChatGPT-3.5
Turbo. It is essential to recognize that other companies have also
introduced their LLM models, such as Meta’s Llama2 and Google’s
PaLM2 and Bard. These alternative models may bring their unique
features and performance characteristics, which could potentially
impact the validity of our findings. Furthermore, it is important
to acknowledge that the performance of ChatGPT models may
exhibit variations across different sets of projects. To account for
this variability and enhance the generalizability of our results, we
have included a diverse array of projects from various repositories
and backgrounds. Moreover, during our investigation, we refrained
from conducting inter-procedural analysis due to ChatGPT token
limitations, whereas Infer performs such an analysis.

8 RELATEDWORK
Recently, there has been a considerable volume of research dedi-
cated to exploring the capabilities of Large LanguageModels (LLMs)

within the domain of Software Engineering (SE). For example, sev-
eral studies focus on automated program repair [6, 12, 13, 15, 27–
29, 45, 55, 70, 71]. For instance, Xia et al. [70] conducted the first
empirical study to evaluate nine recent state-of-the-art LLMs for
automated program repair tasks on five different repair datasets.
Also, numerous studies in software testing and fuzzing utilize LLMs
[9, 10, 31, 36]. For example, Deng et al. [10] proposed FuzzGPT, a
novel LLM-based fuzzer that can produce unusual programs for
fuzzing real-world systems. Kang et al. [31] proposed LIBRO, a
framework that uses LLMs to automate test generation from general
bug reports. Furthermore, some studies focus on Oracle generation
[11, 50, 62]. For example, Tufano et al. [62] proposed a novel asser-
tion generation approach using a BART transformer model. Nie
et al. [50] proposed an approach for predicting the next statement
in test methods that need reasoning about the code execution by
utilizing CodeT5 model. There also studies that used LLMs in Re-
quirements Engineering (RE) [24, 43, 48, 56, 67]. For example, Hey et
al. [24] fine-tuned the BERT model for different requirement classi-
fication tasks. Luo et al. [43] proposed a prompt learning technique
in BERT-based pre-trained models for requirement classification.
In static analysis, Li et al. [37, 38] applied ChatGPT using prompt
engineering to prune false-positive warnings produced by a static
analyzer to improve the tool. As far as we know, this is the only
study that utilized ChatGPT for static analysis and improving a
static analyzer. However, we took a different approach by evaluat-
ing various versions of ChatGPT models and prompt strategies and
testing them on two different static analysis tasks. In our study, we
aimed to comprehensively assess ChatGPT’s capabilities in various
static analysis tasks (e.g., LLM-powered static bug detection), not
just focusing on filtering false-positive warnings.

9 CONCLUSION
This paper conducts an empirical study that evaluates ChatGPT
models for static code analysis. Our experiments can showcase the
capabilities of LLMs like ChatGPT models in carrying out code
analysis tasks, including static bug detection and false-positive
warning removal. To generate warnings, we employed Infer, a well-
established static analysis tool, on prominent open-source Java
projects and projects from prior research. Subsequently, we metic-
ulously labeled each of the generated warnings for two types of
bugs: Null Dereference and Resource Leak, thereby creating a new
dataset for our analytical work. We then harnessed the power of
different ChatGPT models (i.e., ChatGPT-3.5 Turbo, ChatGPT-4)
under different prompting strategies. Our experiments reveal that
ChatGPT models can improve or outperform baseline counterparts,
all while offering significant advantages in terms of reduced costs
and complexity.

In the future, our research endeavors will broaden in scope as
we aim to explore a wider array of LLMs, such as Meta’s Llama,
Google’s Bard, and PaLM2. We also intend to delve into a compara-
tive analysis between fine-tuned LLMs and LLMs that are special-
ized for specific tasks through prompt engineering.

10 DATA AVAILABILITY
We release the dataset and the source code [47] for our experiments
for future usage and to support the replication of our study.
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